中国农业气象
中國農業氣象
중국농업기상
AGRICULTURAL METEOROLOGY
2015年
3期
323-330
,共8页
郭春明%任景全%曲思邈%李忠辉
郭春明%任景全%麯思邈%李忠輝
곽춘명%임경전%곡사막%리충휘
春玉米%灌浆模型%积温%东北
春玉米%灌漿模型%積溫%東北
춘옥미%관장모형%적온%동북
Spring maize%Grain ̄filling model%Accumulated temperature%Northeast China
利用白城国家一级农试站2011-2013年春玉米田间试验观测数据,基于 Richards 方程建立和验证东北春玉米籽粒灌浆模型,并进行籽粒灌浆特性分析。结果表明:分别以相对开花后天数、相对活动积温和相对≥10℃有效积温为自变量,相对百粒重为因变量建立的籽粒灌浆过程普适模型(模型 I、模型 II 和模型 III)均通过了0.01水平的显著性检验(R2>0.98)。模型回代后模拟值与实测值的评价指标 NSE(Nash ̄Sutcliffe 指数)和RSR(均方根误差与标准差的比值)值均表现为“很好”的效果。模拟值与实测值散点均在1︰1线±10%范围内。模型 I 显示,东北春玉米籽粒灌浆活跃期为46d,整个灌浆过程平均速率为0.84g.d -1;籽粒灌浆速率在开花后32d 达到最大,为1.23g.d -1,此时玉米百粒重为15.17g;灌浆中期对百粒重的贡献率最大,为65.60%,前期和后期贡献率分别为10.50%和23.90%。模型 II 和模型 III 显示,籽粒灌浆活跃期活动积温和≥10℃有效积温分别为1043.5℃.d 和679.1℃.d;灌浆速率在开花后活动积温和≥10℃有效积温分别为782.8℃.d 和473.3℃.d 时达到最大值;中期灌浆贡献率为67.68%。3个模型均显示,中期灌浆贡献率较大,前期和后期相对较小,说明春玉米籽粒干物质积累主要在灌浆中期完成。
利用白城國傢一級農試站2011-2013年春玉米田間試驗觀測數據,基于 Richards 方程建立和驗證東北春玉米籽粒灌漿模型,併進行籽粒灌漿特性分析。結果錶明:分彆以相對開花後天數、相對活動積溫和相對≥10℃有效積溫為自變量,相對百粒重為因變量建立的籽粒灌漿過程普適模型(模型 I、模型 II 和模型 III)均通過瞭0.01水平的顯著性檢驗(R2>0.98)。模型迴代後模擬值與實測值的評價指標 NSE(Nash ̄Sutcliffe 指數)和RSR(均方根誤差與標準差的比值)值均錶現為“很好”的效果。模擬值與實測值散點均在1︰1線±10%範圍內。模型 I 顯示,東北春玉米籽粒灌漿活躍期為46d,整箇灌漿過程平均速率為0.84g.d -1;籽粒灌漿速率在開花後32d 達到最大,為1.23g.d -1,此時玉米百粒重為15.17g;灌漿中期對百粒重的貢獻率最大,為65.60%,前期和後期貢獻率分彆為10.50%和23.90%。模型 II 和模型 III 顯示,籽粒灌漿活躍期活動積溫和≥10℃有效積溫分彆為1043.5℃.d 和679.1℃.d;灌漿速率在開花後活動積溫和≥10℃有效積溫分彆為782.8℃.d 和473.3℃.d 時達到最大值;中期灌漿貢獻率為67.68%。3箇模型均顯示,中期灌漿貢獻率較大,前期和後期相對較小,說明春玉米籽粒榦物質積纍主要在灌漿中期完成。
이용백성국가일급농시참2011-2013년춘옥미전간시험관측수거,기우 Richards 방정건립화험증동북춘옥미자립관장모형,병진행자립관장특성분석。결과표명:분별이상대개화후천수、상대활동적온화상대≥10℃유효적온위자변량,상대백립중위인변량건립적자립관장과정보괄모형(모형 I、모형 II 화모형 III)균통과료0.01수평적현저성검험(R2>0.98)。모형회대후모의치여실측치적평개지표 NSE(Nash ̄Sutcliffe 지수)화RSR(균방근오차여표준차적비치)치균표현위“흔호”적효과。모의치여실측치산점균재1︰1선±10%범위내。모형 I 현시,동북춘옥미자립관장활약기위46d,정개관장과정평균속솔위0.84g.d -1;자립관장속솔재개화후32d 체도최대,위1.23g.d -1,차시옥미백립중위15.17g;관장중기대백립중적공헌솔최대,위65.60%,전기화후기공헌솔분별위10.50%화23.90%。모형 II 화모형 III 현시,자립관장활약기활동적온화≥10℃유효적온분별위1043.5℃.d 화679.1℃.d;관장속솔재개화후활동적온화≥10℃유효적온분별위782.8℃.d 화473.3℃.d 시체도최대치;중기관장공헌솔위67.68%。3개모형균현시,중기관장공헌솔교대,전기화후기상대교소,설명춘옥미자립간물질적루주요재관장중기완성。
The grain ̄filling model of spring maize was established by richards equation with the experiement data of Baicheng from 2011 to 2013. The grain ̄filling characteristic was analyzed based on the confirm and calibration of the model. The results showed that universal grain ̄filling model passed the 0. 01 level of significance test which the days after flowering(model I), active accumulated temperature(model II), effective accumulated temperature above 10℃(model III) were independent variable and the dry weight of 100 ̄grain was dependent variable. Measured and simulated value scattered around ± 10% with 1∶ 1 line, which NSE(Nash ̄Sutcliffe index) and RSR(the rate of root ̄mean ̄square error to standard deviation) performenced very well. Model I showed that the active grain ̄filling duration of spring maize in northeast China was 46d and mean grain ̄filling rate was 0. 84g.d - 1 . Grain ̄filling rate reached maximun(1. 23g.d - 1 ) when the days was 32d after flowering, and dry weight was 15. 17g. The contribution rate of middle stage of grain ̄filling was 65. 60% , early stage and late stage was 10. 50% , 23. 90% ,respectively. Model II and model III showed that the active accumulated temperature and effective accumulated temperature of grain ̄filling were 1043. 5℃.d and 679. 1℃.d. Grain ̄filling rate reached maximun when the active accumulated temperature and effective accumulated temperature were 782. 8℃.d and 473. 3℃.d after flowering. Contribution rate of middle stage of grain ̄filling was 67. 68% . Three models showed that the contribution rate of middle stage was high while early and late stage were relatively low. So, the most dry weight of spring maize was completed in the middle stage of grain ̄filling.