采矿与安全工程学报
採礦與安全工程學報
채광여안전공정학보
JOURNAL OF MINING AND SAFETY ENGINEERING
2015年
3期
459-464
,共6页
郑西贵%刘娜%冯晓巍%张农%付世雄%花锦波
鄭西貴%劉娜%馮曉巍%張農%付世雄%花錦波
정서귀%류나%풍효외%장농%부세웅%화금파
ANSYS%U型钢%反拱梁%极限承载力%屈曲载荷%稳定性
ANSYS%U型鋼%反拱樑%極限承載力%屈麯載荷%穩定性
ANSYS%U형강%반공량%겁한승재력%굴곡재하%은정성
ANSYS%U-shaped steel%antiarch beam%ultimate bearing force%buckling load%stability
针对U型钢截面反拱梁失稳破坏问题,应用CAD与ANSYS两软件联合建立U型钢反拱梁有限元模型,采用ANSYS内置的非线性屈曲分析模块,模拟分析U25,U29和U36这3种不同截面反拱梁在承受径向均布载荷条件下临界屈曲载荷和极限承载力与反拱圆心角之间的关系,并在求解过程中监测跨中节点竖向载荷-位移曲线。ANSYS 数值模拟分析结果表明:3种截面反拱圆心角在70°时临界屈曲载荷达到最大值,随后圆心角加大则屈曲载荷平均以4.0%的速度缓慢下降,表明反拱梁在圆心角70°时稳定性最好;当反拱梁圆心角小于70°时,反拱极限承载力以34.3%的增幅递增,呈快速增长趋势;当圆心角大于70°时,反拱承载力则以14.5%的增幅缓慢增长,增幅速度较为平缓。研究结果为工程应用提供了可行方法和理论依据。
針對U型鋼截麵反拱樑失穩破壞問題,應用CAD與ANSYS兩軟件聯閤建立U型鋼反拱樑有限元模型,採用ANSYS內置的非線性屈麯分析模塊,模擬分析U25,U29和U36這3種不同截麵反拱樑在承受徑嚮均佈載荷條件下臨界屈麯載荷和極限承載力與反拱圓心角之間的關繫,併在求解過程中鑑測跨中節點豎嚮載荷-位移麯線。ANSYS 數值模擬分析結果錶明:3種截麵反拱圓心角在70°時臨界屈麯載荷達到最大值,隨後圓心角加大則屈麯載荷平均以4.0%的速度緩慢下降,錶明反拱樑在圓心角70°時穩定性最好;噹反拱樑圓心角小于70°時,反拱極限承載力以34.3%的增幅遞增,呈快速增長趨勢;噹圓心角大于70°時,反拱承載力則以14.5%的增幅緩慢增長,增幅速度較為平緩。研究結果為工程應用提供瞭可行方法和理論依據。
침대U형강절면반공량실은파배문제,응용CAD여ANSYS량연건연합건립U형강반공량유한원모형,채용ANSYS내치적비선성굴곡분석모괴,모의분석U25,U29화U36저3충불동절면반공량재승수경향균포재하조건하림계굴곡재하화겁한승재력여반공원심각지간적관계,병재구해과정중감측과중절점수향재하-위이곡선。ANSYS 수치모의분석결과표명:3충절면반공원심각재70°시림계굴곡재하체도최대치,수후원심각가대칙굴곡재하평균이4.0%적속도완만하강,표명반공량재원심각70°시은정성최호;당반공량원심각소우70°시,반공겁한승재력이34.3%적증폭체증,정쾌속증장추세;당원심각대우70°시,반공승재력칙이14.5%적증폭완만증장,증폭속도교위평완。연구결과위공정응용제공료가행방법화이론의거。
In order to solve the instability problem of antiarch beam with U-shaped steel section, finite element model of which has been built with the co-assistance of CAD and ANSYS, the built-in non-linear buckling analytical module has simulated three kinds of sections including U25, U29, and U36 respectively, and all of them is under the impact of radical uniformly distributed load, thus rela-tionship between buckling load, ultimate bearing force and central angle of antiarch is able to come into being, where the curve between vertical load and displacement of the uttermost point in the antiarch is monitored. The results have shown that, critical buckling load reaches its peak value as central angle is 70° as to all those three sections, then the load will glide down at the rate of 4.0%with the continuous increase of the angle, it thus manifests that 70° for central angle is optimum for overall stability. If the angle is less than 70°, the load will mount at the rate of 34.3%, however, if the angle is more than 70°, the mounting rate of the load will mitigate at the rate of 14.5%. The results have provided feasible me-thodology and theoretical foundation for engineering practice.