商丘师范学院学报
商丘師範學院學報
상구사범학원학보
JOURNAL OF SHANGQIU TEACHERS COLLEGE
2015年
6期
35-38
,共4页
仿射K?hler-Scalar曲率%Hessian流形%仿射K?hler流形
倣射K?hler-Scalar麯率%Hessian流形%倣射K?hler流形
방사K?hler-Scalar곡솔%Hessian류형%방사K?hler류형
affine K?hler-Scalar curvature%Hessian manifold%affine K?hler manifolds
设x:M→An+1是由定义在凸域Ω炒An上的某局部严格凸函数xn+1=f(x1,...,xn)给出的超曲面.考虑Hessian度量g =∑??2fxi?xjdxidxj .若(M,g)是具有非负李奇曲率的紧致Hessian流形且仿射K?hler-Scalar曲率为零,作者证明了如果Δρ≤nρ2,则函数f一定是二次多项式,其中ρ=[det(fij)]-1n+2.
設x:M→An+1是由定義在凸域Ω炒An上的某跼部嚴格凸函數xn+1=f(x1,...,xn)給齣的超麯麵.攷慮Hessian度量g =∑??2fxi?xjdxidxj .若(M,g)是具有非負李奇麯率的緊緻Hessian流形且倣射K?hler-Scalar麯率為零,作者證明瞭如果Δρ≤nρ2,則函數f一定是二次多項式,其中ρ=[det(fij)]-1n+2.
설x:M→An+1시유정의재철역Ω초An상적모국부엄격철함수xn+1=f(x1,...,xn)급출적초곡면.고필Hessian도량g =∑??2fxi?xjdxidxj .약(M,g)시구유비부리기곡솔적긴치Hessian류형차방사K?hler-Scalar곡솔위령,작자증명료여과Δρ≤nρ2,칙함수f일정시이차다항식,기중ρ=[det(fij)]-1n+2.
Let x:M→An+1 be a locally convex hypersurface, given by the graph of a convex function xn+1 =f(x1,...,xn) defined in a convex domain ΩAn .The Hessian metric g on M is considered, defined by g =∑??2 fxi?xj dxi dxj .Suppose ( M,g) is a compact Hessian manifold with nonnegative Ricci curvature , and with zero affine K?hler-Scalar curvature .It is proved that ifΔρ≤nρ2 , then f must be a quadratic polynomial , whereρ =[det(fij)] -1n+2 .