北京大学学报(医学版)
北京大學學報(醫學版)
북경대학학보(의학판)
JOURNAL OF BEIJING MEDICAL UNIVERSITY(HEALTH SCIENCES)
2015年
3期
483-488
,共6页
诊断试验,常规%Meta分析%模型,统计学
診斷試驗,常規%Meta分析%模型,統計學
진단시험,상규%Meta분석%모형,통계학
Diagnostic tests,routine%Meta-analysis%Models,statistical
目的::调查2014年1月至11月国内期刊发表的诊断试验准确性( diagnostic test accuracy,DTA) Meta分析中简单合并模型与双变量模型的使用现状,分析两模型间结果的差异性,并探讨这种差异性与研究间异质性大小的关系。方法:对《中国生物医学文献数据库》2014年1月至11月收录的文献进行检索,纳入DTA Meta分析,描述模型使用的相关信息,提取四格表数据,使用简单合并模型和双变量模型进行重分析,用非参数检验比较模型结果间差值,定性探究灵敏度、特异度异质性大小与结果间差值的关系。结果:共纳入55篇文章,包括58个DTA Meta分析,其中25个Meta分析用于重分析。简单合并模型与双变量模型的使用比例分别为90.9%(50/55)、1.8%(1/55),使用其他合并模型或未合并灵敏度和特异度的文献比例为7.3%(4/55)。在50篇使用简单合并模型合并灵敏度和特异度的文章中,41篇(82.0%)存在误用Meta-disc软件的可能。两种模型所得灵敏度、特异度差值中位数均为0.011(P<0.001,P=0.031),灵敏度和特异度差值随着I2增大变异程度逐渐增大,I2大于75%时变异程度更为明显。结论:国内期刊发表的DTA Meta分析对灵敏度和特异度进行合并时大多使用简单合并模型,且Meta-disc软件常被误认为可对灵敏度和特异度进行随机效应合并;简单合并模型可能低估真实值,尤其研究间异质性大时其合并值与双变量模型间差异更为明显,研究者应当提高正确认识和选用合并方法的能力。
目的::調查2014年1月至11月國內期刊髮錶的診斷試驗準確性( diagnostic test accuracy,DTA) Meta分析中簡單閤併模型與雙變量模型的使用現狀,分析兩模型間結果的差異性,併探討這種差異性與研究間異質性大小的關繫。方法:對《中國生物醫學文獻數據庫》2014年1月至11月收錄的文獻進行檢索,納入DTA Meta分析,描述模型使用的相關信息,提取四格錶數據,使用簡單閤併模型和雙變量模型進行重分析,用非參數檢驗比較模型結果間差值,定性探究靈敏度、特異度異質性大小與結果間差值的關繫。結果:共納入55篇文章,包括58箇DTA Meta分析,其中25箇Meta分析用于重分析。簡單閤併模型與雙變量模型的使用比例分彆為90.9%(50/55)、1.8%(1/55),使用其他閤併模型或未閤併靈敏度和特異度的文獻比例為7.3%(4/55)。在50篇使用簡單閤併模型閤併靈敏度和特異度的文章中,41篇(82.0%)存在誤用Meta-disc軟件的可能。兩種模型所得靈敏度、特異度差值中位數均為0.011(P<0.001,P=0.031),靈敏度和特異度差值隨著I2增大變異程度逐漸增大,I2大于75%時變異程度更為明顯。結論:國內期刊髮錶的DTA Meta分析對靈敏度和特異度進行閤併時大多使用簡單閤併模型,且Meta-disc軟件常被誤認為可對靈敏度和特異度進行隨機效應閤併;簡單閤併模型可能低估真實值,尤其研究間異質性大時其閤併值與雙變量模型間差異更為明顯,研究者應噹提高正確認識和選用閤併方法的能力。
목적::조사2014년1월지11월국내기간발표적진단시험준학성( diagnostic test accuracy,DTA) Meta분석중간단합병모형여쌍변량모형적사용현상,분석량모형간결과적차이성,병탐토저충차이성여연구간이질성대소적관계。방법:대《중국생물의학문헌수거고》2014년1월지11월수록적문헌진행검색,납입DTA Meta분석,묘술모형사용적상관신식,제취사격표수거,사용간단합병모형화쌍변량모형진행중분석,용비삼수검험비교모형결과간차치,정성탐구령민도、특이도이질성대소여결과간차치적관계。결과:공납입55편문장,포괄58개DTA Meta분석,기중25개Meta분석용우중분석。간단합병모형여쌍변량모형적사용비례분별위90.9%(50/55)、1.8%(1/55),사용기타합병모형혹미합병령민도화특이도적문헌비례위7.3%(4/55)。재50편사용간단합병모형합병령민도화특이도적문장중,41편(82.0%)존재오용Meta-disc연건적가능。량충모형소득령민도、특이도차치중위수균위0.011(P<0.001,P=0.031),령민도화특이도차치수착I2증대변이정도축점증대,I2대우75%시변이정도경위명현。결론:국내기간발표적DTA Meta분석대령민도화특이도진행합병시대다사용간단합병모형,차Meta-disc연건상피오인위가대령민도화특이도진행수궤효응합병;간단합병모형가능저고진실치,우기연구간이질성대시기합병치여쌍변량모형간차이경위명현,연구자응당제고정학인식화선용합병방법적능력。
Objective:To investigate the use of simple pooling and bivariate model in meta-analyses of diagnostic test accuracy (DTA) published in Chinese journals (January to November, 2014), compare the differences of results from these two models, and explore the impact of between-study variability of sensitivity and specificity on the differences. Methods:DTA meta-analyses were searched through Chi-nese Biomedical Literature Database (January to November, 2014). Details in models and data for four-fold table were extracted. Descriptive analysis was conducted to investigate the prevalence of the use of simple pooling method and bivariate model in the included literature. Data were re-analyzed with the two models respectively. Differences in the results were examined by Wilcoxon signed rank test. How the re-sults differences were affected by between-study variability of sensitivity and specificity, expressed by I2 , was explored. Results:The 55 systematic reviews, containing 58 DTA meta-analyses, were included and 25 DTA meta-analyses were eligible for re-analysis. Simple pooling was used in 50 (90. 9%) systematic reviews and bivariate model in 1 (1. 8%). The remaining 4 (7. 3%) articles used other models pooling sensitivity and specificity or pooled neither of them. Of the reviews simply pooling sensitivity and specificity, 41(82. 0%) were at the risk of wrongly using Meta-disc software. The differences in medians of sensitivity and specificity between two models were both 0. 011( P<0. 001, P=0. 031 respectively). Greater differences could be found as I2 of sensitivity or specificity became larger, especially when I2 >75%. Conclusion:Most DTA meta-analyses published in Chinese journals(January to November, 2014) combine the sensitivity and specificity by simple pooling. Meta-disc software can pool the sensitivity and specificity only through fixed-effect model, but a high proportion of authors think it can implement random-effect model. Simple pooling tends to underestimate the results compared with bivariate model. The greater the between-study variance is, the more likely the simple pooling has larger deviation. It is necessary to increase the knowledge level of statistical methods and software for meta-analyses of DTA data.