河海大学学报(自然科学版)
河海大學學報(自然科學版)
하해대학학보(자연과학판)
JOURNAL OF HOHAI UNIVERSITY (NATURAL SCIENCES)
2015年
3期
236-243
,共8页
刘斯宏%李玲君%张雨灼%徐小东%薛向华
劉斯宏%李玲君%張雨灼%徐小東%薛嚮華
류사굉%리령군%장우작%서소동%설향화
土工袋%挡土墙%水平位移%加筋土挡土墙%动土压力%加速度放大倍数
土工袋%擋土牆%水平位移%加觔土擋土牆%動土壓力%加速度放大倍數
토공대%당토장%수평위이%가근토당토장%동토압력%가속도방대배수
soilbag%retaining wall%horizontal displacement%retaining wall reinforced with woven geotexbtiles%dynamic earth pressure%acceleration amplification ratio
通过小型振动台试验,研究了以天然河沙为填料的土工袋挡土墙在水平向不同振动加速度下的位移、动土压力以及水平加速度的分布规律,并与水平加筋土挡土墙和传统的刚性挡土墙进行了对比分析。结果表明,输入加速度不超过0.3 g时,土工袋挡土墙位移变形比刚性挡土墙略大,但是随着输入加速度继续增大,刚性挡土墙发生整体滑移,以致倾覆破坏,而土工袋挡土墙依然稳定,显示出良好的抗震性能。水平加筋土挡土墙的位移一直大于土工袋挡土墙与刚性挡土墙,峰值出现在1/2倍墙高处,且随着输入加速度的增大,挡土墙中上部外凸变形越来越显著;土工袋挡土墙的动土压力系数与墙体位移相对应,沿墙高呈非线性分布,中上部较大、下部较小;土工袋挡土墙的加速度放大倍数随着输入加速度和墙高的增大而增大,均小于水平加筋土挡土墙与刚性挡土墙。同时,针对土工袋挡土墙的破坏失稳模式,对顶部进行加筋处理,可以进一步提高土工袋挡土墙的抗震性能。
通過小型振動檯試驗,研究瞭以天然河沙為填料的土工袋擋土牆在水平嚮不同振動加速度下的位移、動土壓力以及水平加速度的分佈規律,併與水平加觔土擋土牆和傳統的剛性擋土牆進行瞭對比分析。結果錶明,輸入加速度不超過0.3 g時,土工袋擋土牆位移變形比剛性擋土牆略大,但是隨著輸入加速度繼續增大,剛性擋土牆髮生整體滑移,以緻傾覆破壞,而土工袋擋土牆依然穩定,顯示齣良好的抗震性能。水平加觔土擋土牆的位移一直大于土工袋擋土牆與剛性擋土牆,峰值齣現在1/2倍牆高處,且隨著輸入加速度的增大,擋土牆中上部外凸變形越來越顯著;土工袋擋土牆的動土壓力繫數與牆體位移相對應,沿牆高呈非線性分佈,中上部較大、下部較小;土工袋擋土牆的加速度放大倍數隨著輸入加速度和牆高的增大而增大,均小于水平加觔土擋土牆與剛性擋土牆。同時,針對土工袋擋土牆的破壞失穩模式,對頂部進行加觔處理,可以進一步提高土工袋擋土牆的抗震性能。
통과소형진동태시험,연구료이천연하사위전료적토공대당토장재수평향불동진동가속도하적위이、동토압력이급수평가속도적분포규률,병여수평가근토당토장화전통적강성당토장진행료대비분석。결과표명,수입가속도불초과0.3 g시,토공대당토장위이변형비강성당토장략대,단시수착수입가속도계속증대,강성당토장발생정체활이,이치경복파배,이토공대당토장의연은정,현시출량호적항진성능。수평가근토당토장적위이일직대우토공대당토장여강성당토장,봉치출현재1/2배장고처,차수착수입가속도적증대,당토장중상부외철변형월래월현저;토공대당토장적동토압력계수여장체위이상대응,연장고정비선성분포,중상부교대、하부교소;토공대당토장적가속도방대배수수착수입가속도화장고적증대이증대,균소우수평가근토당토장여강성당토장。동시,침대토공대당토장적파배실은모식,대정부진행가근처리,가이진일보제고토공대당토장적항진성능。
The distribution patterns of horizontal displacements, dynamic earth pressures, and horizontal accelerations of retaining walls constructed with soilbags filled with natural river sand under different horizontal vibration accelerations were investigated through small-scale shaking table tests, and they were compared with those of retaining walls reinforced with horizontal woven geotextiles and traditional rigid retaining walls under the same horizontal vibration accelerations. The results show that, when the input acceleration is not more than 0. 3g, the displacement of the retaining wall constructed with soilbags is slightly larger than that of the rigid retaining wall. With the increase of the input acceleration, slippage of the entire rigid retaining wall occurs, and then overturning failure occurs, while the retaining wall constructed with soilbags can still remain stable, showing a good seismic performance. The displacement of the retaining wall reinforced with horizontal woven geotextiles, with a maximum value at half of the wall height, is always larger than those of the retaining wall constructed with soilbags and the rigid retaining wall, and the convex deformation of the upper part of the retaining wall reinforced with horizontal woven geotextiles is more significant with the increase of the input acceleration. Dynamic earth pressure coefficients of retaining walls show a nonlinear distribution along the wall height, with larger values in the upper part of retaining walls and smaller values in the lower part. With the increase of the input acceleration and wall height, the horizontal acceleration amplification ratio of the retaining wall constructed with soilbags increases, and is slightly lower than those of the retaining wall reinforced with horizontal woven geotextiles and the rigid retaining wall. According to failure and instability modes of retaining walls constructed with soilbags, the seismic performance of retaining walls constructed with soilbags can be improved greatly through reinforcement of some soilbags at top layers with geotextiles.