测绘学报
測繪學報
측회학보
ACTA GEODAETICA ET CARTOGRAPHICA SINICA
2015年
6期
663-669
,共7页
视频测量%影像块%椭圆识别%数学形态学%最小二乘法
視頻測量%影像塊%橢圓識彆%數學形態學%最小二乘法
시빈측량%영상괴%타원식별%수학형태학%최소이승법
videogrammetric measurement%image block%el l ipse identification%mathematical morphology%least square algorithm
针对视频测量建筑物健康监测获取海量影像序列数据快速、准确识别和跟踪目标点的需求,提出基于影像块技术的椭圆形目标点识别和跟踪完整算法.该算法采用影像分块技术降低数据处理量,实现椭圆形目标点跟踪,集成数学形态学和椭圆几何属性特征,消除图像块边缘检测的非椭圆边缘信息,实现椭圆轮廓的提取,并采用最小二乘法拟合椭圆中心实现亚像素定位,快速、准确地实现视频测量建筑物健康监测椭圆形目标点的识别与跟踪.试验结果表明该方法获取的椭圆中心点像素坐标的RMS 残差优于0.025个像素,且相对于随机 Hough 变换和模板识别算法,跟踪效率提高5倍以上.
針對視頻測量建築物健康鑑測穫取海量影像序列數據快速、準確識彆和跟蹤目標點的需求,提齣基于影像塊技術的橢圓形目標點識彆和跟蹤完整算法.該算法採用影像分塊技術降低數據處理量,實現橢圓形目標點跟蹤,集成數學形態學和橢圓幾何屬性特徵,消除圖像塊邊緣檢測的非橢圓邊緣信息,實現橢圓輪廓的提取,併採用最小二乘法擬閤橢圓中心實現亞像素定位,快速、準確地實現視頻測量建築物健康鑑測橢圓形目標點的識彆與跟蹤.試驗結果錶明該方法穫取的橢圓中心點像素坐標的RMS 殘差優于0.025箇像素,且相對于隨機 Hough 變換和模闆識彆算法,跟蹤效率提高5倍以上.
침대시빈측량건축물건강감측획취해량영상서렬수거쾌속、준학식별화근종목표점적수구,제출기우영상괴기술적타원형목표점식별화근종완정산법.해산법채용영상분괴기술강저수거처리량,실현타원형목표점근종,집성수학형태학화타원궤하속성특정,소제도상괴변연검측적비타원변연신식,실현타원륜곽적제취,병채용최소이승법의합타원중심실현아상소정위,쾌속、준학지실현시빈측량건축물건강감측타원형목표점적식별여근종.시험결과표명해방법획취적타원중심점상소좌표적RMS 잔차우우0.025개상소,차상대우수궤 Hough 변환화모판식별산법,근종효솔제고5배이상.
In order to satisfy the requi rement of identification and tracking the el l iptical artificial targets fast and accurately for the image sequences from videogrammetric measurement for structural health monitoring,this paper proposes a systemic algorithm to identify and track the el l iptical targets using the image block technique.The proposed method extracts the image block from original images to reduce the amount of data processing for the oval targets tracking.The mathematical morphology and el l iptical geometric characteristics are integrated to el iminate the non-el l iptical edge information to extract the el l iptical contour in the range of image block.At last,the sub-pixel center location for el l iptical artificial targets is acqui red by the least square algorithm.The experimental results show that RMS error of 0.025 pixel can be achieved by the proposed method,furthermore,compared with the random Hough transform and template recognition algorithm,the tracking efficiency is improved over 5 times.