固体火箭技术
固體火箭技術
고체화전기술
JOURNAL OF SOLID ROCKET TECHNOLOGY
2015年
3期
426-432,450
,共8页
姜薇%李亚智%苏杰%束一秀
薑薇%李亞智%囌傑%束一秀
강미%리아지%소걸%속일수
延性断裂%拉伸失效%剪切失效%细观损伤模型%Gurson理论
延性斷裂%拉伸失效%剪切失效%細觀損傷模型%Gurson理論
연성단렬%랍신실효%전절실효%세관손상모형%Gurson이론
ductile fracture%tensile failure%shear failure%meso-damage model%Gurson theory
2024铝合金材料在拉伸和扭转载荷作用下表现出截然不同的失效机理。结合试验和数值方法,研究了应力状态对2024?T3铝合金韧性断裂行为的影响规律。首先,对圆棒和薄壁圆筒试验件分别进行了拉伸和扭转试验,从断面形貌以及断裂应变与应力状态间关系两个方面,考察了应力状态对2024?T3铝合金断裂机理的影响规律。然后,基于Gurson理论在商业有限元软件ABAQUS中开发了同时适用于拉伸和剪切断裂模式的细观损伤本构,对2024?T3铝合金的弹塑性响应和裂纹扩展路径进行了数值分析。与试验结果对比研究表明,本文发展的细观损伤本构能够较好预测延性金属材料在多种应力状态下的损伤破坏过程。
2024鋁閤金材料在拉伸和扭轉載荷作用下錶現齣截然不同的失效機理。結閤試驗和數值方法,研究瞭應力狀態對2024?T3鋁閤金韌性斷裂行為的影響規律。首先,對圓棒和薄壁圓筒試驗件分彆進行瞭拉伸和扭轉試驗,從斷麵形貌以及斷裂應變與應力狀態間關繫兩箇方麵,攷察瞭應力狀態對2024?T3鋁閤金斷裂機理的影響規律。然後,基于Gurson理論在商業有限元軟件ABAQUS中開髮瞭同時適用于拉伸和剪切斷裂模式的細觀損傷本構,對2024?T3鋁閤金的彈塑性響應和裂紋擴展路徑進行瞭數值分析。與試驗結果對比研究錶明,本文髮展的細觀損傷本構能夠較好預測延性金屬材料在多種應力狀態下的損傷破壞過程。
2024려합금재료재랍신화뉴전재하작용하표현출절연불동적실효궤리。결합시험화수치방법,연구료응력상태대2024?T3려합금인성단렬행위적영향규률。수선,대원봉화박벽원통시험건분별진행료랍신화뉴전시험,종단면형모이급단렬응변여응력상태간관계량개방면,고찰료응력상태대2024?T3려합금단렬궤리적영향규률。연후,기우Gurson이론재상업유한원연건ABAQUS중개발료동시괄용우랍신화전절단렬모식적세관손상본구,대2024?T3려합금적탄소성향응화렬문확전로경진행료수치분석。여시험결과대비연구표명,본문발전적세관손상본구능구교호예측연성금속재료재다충응력상태하적손상파배과정。
Under tensile and shear loading conditions, 2024 aluminum alloy exhibits two types of distinctive ductile rupture mechanisms. The growth and internal necking of voids governs the rupture mechanism in tension dominated loading mode, while the internal shearing in the ligaments between voids dominants for shear conditions. To investigate the influence of stress states on the material ductility of 2024?T3 aluminum alloy, tensile experiments of a smooth round bar and three notched round bars with different notch root radii as well as a pure torsion experiment were performed. Based on the modification of Gurson model by Nahshon and Hutchinson, a void?based meso?damage constitutive relationship which can deal with both tensile and shear problems was developed and implemented in commercial software ABAQUS. The tensile and shear fracture behaviors of 2024?T3 aluminum alloy including the load?displacement response and crack propagation path were analyzed using the proposed approach and compared with experi?mental data. It is shown that the proposed approach can be used to predict the failure of ductile materials under complex loading conditions.