图学学报
圖學學報
도학학보
Journal of Graphics
2015年
3期
477-484
,共8页
模糊聚类%邻域像素%惩罚项%医学图像分割
模糊聚類%鄰域像素%懲罰項%醫學圖像分割
모호취류%린역상소%징벌항%의학도상분할
fuzzy clustering%neighborhood pixels%punishment factor%medical image segmentation
针对含有噪声且光线不均的医学图像,提出了一种基于模糊C均值聚类的图像分割算法。模糊C均值聚类算法描述简洁、易于实现、分割效果好,在图像分割应用领域得到了快速发展,但也存在着对噪声敏感的问题。考虑到提取的医学图像数据中必定包含噪声,因此通过修改目标模糊函数J(u, v),在引入像素点邻域信息的基础上,对邻域信息加入了惩罚因子。弥补了传统模糊C均值聚类算法的不足,使该方法对含有噪声的医学图像更加有效。实验分析表明了算法的有效性和实用性。
針對含有譟聲且光線不均的醫學圖像,提齣瞭一種基于模糊C均值聚類的圖像分割算法。模糊C均值聚類算法描述簡潔、易于實現、分割效果好,在圖像分割應用領域得到瞭快速髮展,但也存在著對譟聲敏感的問題。攷慮到提取的醫學圖像數據中必定包含譟聲,因此通過脩改目標模糊函數J(u, v),在引入像素點鄰域信息的基礎上,對鄰域信息加入瞭懲罰因子。瀰補瞭傳統模糊C均值聚類算法的不足,使該方法對含有譟聲的醫學圖像更加有效。實驗分析錶明瞭算法的有效性和實用性。
침대함유조성차광선불균적의학도상,제출료일충기우모호C균치취류적도상분할산법。모호C균치취류산법묘술간길、역우실현、분할효과호,재도상분할응용영역득도료쾌속발전,단야존재착대조성민감적문제。고필도제취적의학도상수거중필정포함조성,인차통과수개목표모호함수J(u, v),재인입상소점린역신식적기출상,대린역신식가입료징벌인자。미보료전통모호C균치취류산법적불족,사해방법대함유조성적의학도상경가유효。실험분석표명료산법적유효성화실용성。
This paper proposes a new algorithm based on traditional fuzzy C-means algorithm regard to the noise and uneven light in medical images. Fuzzy C-means clustering algorithm has been rapid developed in image segmentation applications, as simple description, easy to implement, works well for segmentation. But there are also other issues such as noise sensitive. Considering that the medical images data must contain noise, a modified objective function J(u, v) has been proposed, adding a punishment factor on the basis of introducing the pixel neighborhood information. The new algorithm covers the shortage of traditional fuzzy C-means clustering algorithm, which makes the algorithm clustering with noise more effectively. Experimental results show that the algorithm is effective and practical.