计算机技术与发展
計算機技術與髮展
계산궤기술여발전
COMPUTER TECHNOLOGY AND DEVELOPMENT
2015年
6期
64-68
,共5页
认知无线电%机器学习%连续隐马尔可夫模型%频谱检测
認知無線電%機器學習%連續隱馬爾可伕模型%頻譜檢測
인지무선전%궤기학습%련속은마이가부모형%빈보검측
cognitive radio%machine learning%continuous hidden Markov model%spectrum sensing
机器学习是当前人工智能的主要研究方向,连续隐马尔可夫模型( Continuous Hidden MarKov Model,CHMM)作为机器学习方法的一种被广泛应用于故障诊断、图像处理、生命科学等领域。研究表明,在信道占用和空闲状态下采样得到的能量值满足不同的高斯分布,故可采用机器学习方法通过模式识别进行频谱感知;同时为了克服离散隐马尔可夫模型( Discrete Hidden MarKov Model,DHMM)在处理连续信号矢量量化过程中产生的信息失真问题,文中将CHMM引入多用户协作频谱检测技术,分别根据信道占用和信道空闲时采集到的能量值来训练CHMM模型建立CHMM1-CHMMn ,多个次用户分别将当前采集到的信道的能量值作为待测矩阵同CHMM1-CHMMn进行模式识别,根据识别结果判定当前信道是占用还是空闲。仿真结果表明,该方法在频谱感知方面具有较高的准确性。
機器學習是噹前人工智能的主要研究方嚮,連續隱馬爾可伕模型( Continuous Hidden MarKov Model,CHMM)作為機器學習方法的一種被廣汎應用于故障診斷、圖像處理、生命科學等領域。研究錶明,在信道佔用和空閒狀態下採樣得到的能量值滿足不同的高斯分佈,故可採用機器學習方法通過模式識彆進行頻譜感知;同時為瞭剋服離散隱馬爾可伕模型( Discrete Hidden MarKov Model,DHMM)在處理連續信號矢量量化過程中產生的信息失真問題,文中將CHMM引入多用戶協作頻譜檢測技術,分彆根據信道佔用和信道空閒時採集到的能量值來訓練CHMM模型建立CHMM1-CHMMn ,多箇次用戶分彆將噹前採集到的信道的能量值作為待測矩陣同CHMM1-CHMMn進行模式識彆,根據識彆結果判定噹前信道是佔用還是空閒。倣真結果錶明,該方法在頻譜感知方麵具有較高的準確性。
궤기학습시당전인공지능적주요연구방향,련속은마이가부모형( Continuous Hidden MarKov Model,CHMM)작위궤기학습방법적일충피엄범응용우고장진단、도상처리、생명과학등영역。연구표명,재신도점용화공한상태하채양득도적능량치만족불동적고사분포,고가채용궤기학습방법통과모식식별진행빈보감지;동시위료극복리산은마이가부모형( Discrete Hidden MarKov Model,DHMM)재처리련속신호시량양화과정중산생적신식실진문제,문중장CHMM인입다용호협작빈보검측기술,분별근거신도점용화신도공한시채집도적능량치래훈련CHMM모형건립CHMM1-CHMMn ,다개차용호분별장당전채집도적신도적능량치작위대측구진동CHMM1-CHMMn진행모식식별,근거식별결과판정당전신도시점용환시공한。방진결과표명,해방법재빈보감지방면구유교고적준학성。
Machine learning is the main research direction of artificial intelligence now,Continuous Hidden Markov Model ( CHMM) is widely used in the fields of fault diagnosis,image processing,life science and others as a machine learning method. Research has shown that the collected energy values in channel occupied status and channel idle status meet different Gaussian distribution,so spectrum sensing can be carried out with machine learning method by pattern recognition. At the same time,in order to overcome the information distortion problem caused by DHMM when processing vector quantization, use CHMM in multi-user cooperative spectrum detection, training CHMM models to build CHMM1-CHMMn based on the collected energy values in channel occupied status and channel idle status respec-tively,multiple secondary users treat the collected energy values as the testing matrix to match with CHMM1-CHMMn ,to judge the chan-nels whether occupied or idle based on the match result. The simulation results show that this method has high accuracy in spectrum sens-ing.