计算机技术与发展
計算機技術與髮展
계산궤기술여발전
COMPUTER TECHNOLOGY AND DEVELOPMENT
2015年
6期
1-5,15
,共6页
查九%李振博%徐桂琼
查九%李振博%徐桂瓊
사구%리진박%서계경
协同过滤%用户近邻%近邻约束%矩阵因子
協同過濾%用戶近鄰%近鄰約束%矩陣因子
협동과려%용호근린%근린약속%구진인자
collaborative filtering%user’ s neighbors%neighbor regularization%matrix factorization
矩阵因子分解推荐算法是基于模型的协同过滤算法中应用最广泛的一种推荐技术。针对推荐系统数据的稀疏性和推荐算法的实时性等问题,在传统矩阵因子分解模型的基础上引入用户近邻模型约束,提出基于用户近邻约束的矩阵因子算法。该算法充分利用了矩阵因子模型的优点,通过用户近邻约束进一步提高了算法相应的实时性和推荐的质量。在MovieLens数据集上的实验结果表明,该算法能有效解决数据稀疏和实时性问题,在推荐质量上比传统算法有了较大提高。
矩陣因子分解推薦算法是基于模型的協同過濾算法中應用最廣汎的一種推薦技術。針對推薦繫統數據的稀疏性和推薦算法的實時性等問題,在傳統矩陣因子分解模型的基礎上引入用戶近鄰模型約束,提齣基于用戶近鄰約束的矩陣因子算法。該算法充分利用瞭矩陣因子模型的優點,通過用戶近鄰約束進一步提高瞭算法相應的實時性和推薦的質量。在MovieLens數據集上的實驗結果錶明,該算法能有效解決數據稀疏和實時性問題,在推薦質量上比傳統算法有瞭較大提高。
구진인자분해추천산법시기우모형적협동과려산법중응용최엄범적일충추천기술。침대추천계통수거적희소성화추천산법적실시성등문제,재전통구진인자분해모형적기출상인입용호근린모형약속,제출기우용호근린약속적구진인자산법。해산법충분이용료구진인자모형적우점,통과용호근린약속진일보제고료산법상응적실시성화추천적질량。재MovieLens수거집상적실험결과표명,해산법능유효해결수거희소화실시성문제,재추천질량상비전통산법유료교대제고。
Matrix factorization algorithm based on collaborative filtering is one of the most widely used in the personalized recommenda-tion system. Concerning the problems of data sparsity and real-time in recommendation system,a matrix factorization algorithm based on user’ s neighbors regularized is proposed based on traditional matrix factorization model. The algorithm takes advantage of the matrix fac-torization model,using the user’ s neighbor as a regularization to improve the quality and real-time of recommendation algorithm. The ex-perimental results in movieLens datasets show that the proposed algorithm can more efficiently improve recommendation quality than the traditional algorithm,and solve the problems of data sparsity and real-time.