计算机技术与发展
計算機技術與髮展
계산궤기술여발전
COMPUTER TECHNOLOGY AND DEVELOPMENT
2015年
6期
48-55
,共8页
徐新瑞%孟彩霞%周雯%刘盈
徐新瑞%孟綵霞%週雯%劉盈
서신서%맹채하%주문%류영
在线学习%自适应软边缘%软置信权重%二阶协同过滤%推荐系统%Hadoop%SparK on YARN
在線學習%自適應軟邊緣%軟置信權重%二階協同過濾%推薦繫統%Hadoop%SparK on YARN
재선학습%자괄응연변연%연치신권중%이계협동과려%추천계통%Hadoop%SparK on YARN
online learning%adaptive soft margin%soft confidence weight%second order collaborative filtering%recommender system%Ha-doop%Spark on YARN
针对传统的批量学习的基于模型的协同过滤算法对新用户(物品)更新缓慢,模型重训练成本高且扩展性不足,对噪音数据的处理有待提高,尤其是随着数据量的增长和时效性要求越来越高,挖掘其中的知识变得越来越困难等问题,对置信权重在线协同过滤算法进行改进。引入自适应软边缘,提出二阶在线优化方法处理在线协同过滤中问题的新算法( Soft Confidence Weighted Online Collaborative Filtering,SCWOCF),并在SparK流处理推荐框架下利用四组真实数据与相关算法作对比测试。实验结果表明,新算法能够及时处理用户(物品)的动态变化,并提升推荐的实时性和准确性,降低计算成本,对噪声数据健壮性更强。
針對傳統的批量學習的基于模型的協同過濾算法對新用戶(物品)更新緩慢,模型重訓練成本高且擴展性不足,對譟音數據的處理有待提高,尤其是隨著數據量的增長和時效性要求越來越高,挖掘其中的知識變得越來越睏難等問題,對置信權重在線協同過濾算法進行改進。引入自適應軟邊緣,提齣二階在線優化方法處理在線協同過濾中問題的新算法( Soft Confidence Weighted Online Collaborative Filtering,SCWOCF),併在SparK流處理推薦框架下利用四組真實數據與相關算法作對比測試。實驗結果錶明,新算法能夠及時處理用戶(物品)的動態變化,併提升推薦的實時性和準確性,降低計算成本,對譟聲數據健壯性更彊。
침대전통적비량학습적기우모형적협동과려산법대신용호(물품)경신완만,모형중훈련성본고차확전성불족,대조음수거적처리유대제고,우기시수착수거량적증장화시효성요구월래월고,알굴기중적지식변득월래월곤난등문제,대치신권중재선협동과려산법진행개진。인입자괄응연변연,제출이계재선우화방법처리재선협동과려중문제적신산법( Soft Confidence Weighted Online Collaborative Filtering,SCWOCF),병재SparK류처리추천광가하이용사조진실수거여상관산법작대비측시。실험결과표명,신산법능구급시처리용호(물품)적동태변화,병제승추천적실시성화준학성,강저계산성본,대조성수거건장성경강。
Focused on some drawbacks of traditional collaborative filtering algorithms based on model of batch learning,such as updating slowly for new users or items,highly retraining cost and expanding difficultly,and handling noise data need to be improved,especially, being more and more difficult for knowledge mining with growing data and the requirement of real-time,the online collaborative filtering algorithm of confidence weighted is improved. In order to solve these problems, a new algorithm named SCWOCF ( Soft Confidence Weighted Online Collaborative Filtering) was proposed. In this algorithm,the adaptive soft margin was added and the second order online optimization methodology was used to solve online collaborative filtering problems. Finally, several experiments with four real-world datasets was conducted compared with some similar algorithms on the Spark stream processing recommendation framework. The results show that the new algorithm can timely handle dynamic change of users and items,promoting the real-time and accuracy of recommenda-tion,reducing cost of computation,increasing robustness to noise data.