火力与指挥控制
火力與指揮控製
화력여지휘공제
FIRE CONTROL & COMMAND CONTROL
2015年
6期
152-154,158
,共4页
无人驾驶%阈值分割%边缘检测%数学形态学%Hough变换
無人駕駛%閾值分割%邊緣檢測%數學形態學%Hough變換
무인가사%역치분할%변연검측%수학형태학%Hough변환
unmanned vehicle%threshold segmentation%edge detection%mathematical morphology%hough transformation
为了提高无人驾驶汽车视觉导航系统中车道线检测的准确性和实时性,在对车道线检测技术进行深入研究的基础上,提出一种能快速准确检测出车道线的新算法。首先采用分块思想将RGB图像中与道路无关的区域去除,以缩短数据处理时间。然后对余下的RGB图像进行灰度化处理,接着用中值滤波法消除随机噪声,再用最大类间方差法(Otsu法)初步得到二值图像。最后对二值图像利用数学形态学进一步边缘细化,使位于车道线上的每个像素行只有一个像素特征点,再采用Hough变换检测出车道线。Matlab仿真结果表明,此算法能够快速准确地检测出车道线,较传统检测算法具有更强准确性和实时性。
為瞭提高無人駕駛汽車視覺導航繫統中車道線檢測的準確性和實時性,在對車道線檢測技術進行深入研究的基礎上,提齣一種能快速準確檢測齣車道線的新算法。首先採用分塊思想將RGB圖像中與道路無關的區域去除,以縮短數據處理時間。然後對餘下的RGB圖像進行灰度化處理,接著用中值濾波法消除隨機譟聲,再用最大類間方差法(Otsu法)初步得到二值圖像。最後對二值圖像利用數學形態學進一步邊緣細化,使位于車道線上的每箇像素行隻有一箇像素特徵點,再採用Hough變換檢測齣車道線。Matlab倣真結果錶明,此算法能夠快速準確地檢測齣車道線,較傳統檢測算法具有更彊準確性和實時性。
위료제고무인가사기차시각도항계통중차도선검측적준학성화실시성,재대차도선검측기술진행심입연구적기출상,제출일충능쾌속준학검측출차도선적신산법。수선채용분괴사상장RGB도상중여도로무관적구역거제,이축단수거처리시간。연후대여하적RGB도상진행회도화처리,접착용중치려파법소제수궤조성,재용최대류간방차법(Otsu법)초보득도이치도상。최후대이치도상이용수학형태학진일보변연세화,사위우차도선상적매개상소행지유일개상소특정점,재채용Hough변환검측출차도선。Matlab방진결과표명,차산법능구쾌속준학지검측출차도선,교전통검측산법구유경강준학성화실시성。
In order to improve accuracy and real-time of lane line detection in vision navigation system of unmanned vehicle,based on an in-depth study of the lane line detection technique,a new algorithm for fast and accurate detection of lane is introduced. Firsly,through the use of block theory, the road independent region of RGB image is removed,to shorten the data processing time. And then after the graying of the rest of RGB image,the median filtering method is used to eliminate the random noise,the Method of Maximum Classes Square Error(Method of Otsu)is introduced to obtain the binary image. Finally,edge thinning based on mathematical morphology is proposed to make each pixel row of each lane only left one characteristic pixel. And the lane line detection based on Hough transformation is carried out. The Matlab simulation results show that the proposed algorithm can detect lane line quickly and accurately,compared with the traditional method has better accuracy and real-time.