解放军理工大学学报(自然科学版)
解放軍理工大學學報(自然科學版)
해방군리공대학학보(자연과학판)
JOURNAL OF PLA UNIVERSITY OF SCIENCE AND TECHNOLOGY(NATURAL SCIENCE EDITION)
2015年
3期
299-304
,共6页
布谷鸟搜索算法%自适应%函数优化%群体智能
佈穀鳥搜索算法%自適應%函數優化%群體智能
포곡조수색산법%자괄응%함수우화%군체지능
cuckoo search algorithm (CS)%self-adaptive%function optimization%swarm intelligence
为了提高布谷鸟搜索算法求解连续函数优化问题的性能,提出一种自适应布谷鸟搜索算法,改进算法利用解与当前最优解之间对应维上距离,实现随机游动步长的自适应调整。距离当前最优解对应维越远,维的随机游动步长越长,反之越短。利用解的适应度与群体平均适应度的关系自适应调整发现概率,使劣质解比优秀解更容易被淘汰。将自适应布谷鸟算法应用于8个典型测试函数,实验结果表明,改进算法有效改善求解连续函数优化问题的性能,尤其适合求解高维、多峰的复杂函数。与相关的布谷鸟搜索算法比较,自适应布谷鸟搜索算法更具竞争力。
為瞭提高佈穀鳥搜索算法求解連續函數優化問題的性能,提齣一種自適應佈穀鳥搜索算法,改進算法利用解與噹前最優解之間對應維上距離,實現隨機遊動步長的自適應調整。距離噹前最優解對應維越遠,維的隨機遊動步長越長,反之越短。利用解的適應度與群體平均適應度的關繫自適應調整髮現概率,使劣質解比優秀解更容易被淘汰。將自適應佈穀鳥算法應用于8箇典型測試函數,實驗結果錶明,改進算法有效改善求解連續函數優化問題的性能,尤其適閤求解高維、多峰的複雜函數。與相關的佈穀鳥搜索算法比較,自適應佈穀鳥搜索算法更具競爭力。
위료제고포곡조수색산법구해련속함수우화문제적성능,제출일충자괄응포곡조수색산법,개진산법이용해여당전최우해지간대응유상거리,실현수궤유동보장적자괄응조정。거리당전최우해대응유월원,유적수궤유동보장월장,반지월단。이용해적괄응도여군체평균괄응도적관계자괄응조정발현개솔,사렬질해비우수해경용역피도태。장자괄응포곡조산법응용우8개전형측시함수,실험결과표명,개진산법유효개선구해련속함수우화문제적성능,우기괄합구해고유、다봉적복잡함수。여상관적포곡조수색산법비교,자괄응포곡조수색산법경구경쟁력。
To improve the performance of cuckoo search algorithm for continuous function optimization problems,an improved algorithm based on self-adaptive cuckoo search algorithm was proposed.The dis-tance between the corresponding dimension of the current solution and the current optimal solution was used,and the improved algorithm realized the adaptive adjustment of the random walk,with the results of the farther the distance to the current optimal solution at the corresponding dimension,the longer the ran-dom walk,and the closer the distance to the current optimal solution at the corresponding dimension,the shorter the random walk.The relationship of the solution's fitness and the population average fitness was used to adaptively adjust to find probability,with bad solutions more easily eliminated than good solution. The simulation experiment on 8 benchmark functions shows that the improved algorithm efficiently im-proves the performance on continuous function optimization problem,especially suitable for solving high-dimension and multimodal function optimization problems.Comparison with the results of the related cuckoo search algorithm shows that the improved algorithm is competitive.