广西大学学报(自然科学版)
廣西大學學報(自然科學版)
엄서대학학보(자연과학판)
JOURNAL OF GUANGXI UNIVERSITY (NATURAL SCIENCE EDITION)
2015年
3期
643-650
,共8页
岸桥%集卡%边装边卸%协同调度%遗传算法
岸橋%集卡%邊裝邊卸%協同調度%遺傳算法
안교%집잡%변장변사%협동조도%유전산법
quay crane%yard truck%loading while unloading%co-allocating scheduling%genetic al-gorithm
岸桥分配与集卡调度是相互联系相互影响的问题,如果要提高码头装卸效率,就必须协调好两者的调度关系。针对集装箱码头岸桥和集卡的协同调度问题,以使进口箱和出口箱的总完工时间最短为目的,考虑了集卡路径约束和岸桥实际操作情况等实际约束,构建了边装边卸的混合整数规划模型。由于模型比较复杂,因此采用了分层方法来实现两种设备的协调调度,并用改进的遗传算法来求解模型。实验表明,通过将改进算法的结果与标准化软件CPLEX所求得的最优解或下界比较,算法求得6组最优解且剩余算例平均偏差小于5%;在求解时间方面,随着岸桥、集卡和集装箱数量的增加,CPLEX求解时间跨度由1 s到1 h快速增长,而改进算法求解却仅仅需要几十秒,因此说明改进的算法可以快速有效地解决岸桥和集卡的协同调度问题。
岸橋分配與集卡調度是相互聯繫相互影響的問題,如果要提高碼頭裝卸效率,就必鬚協調好兩者的調度關繫。針對集裝箱碼頭岸橋和集卡的協同調度問題,以使進口箱和齣口箱的總完工時間最短為目的,攷慮瞭集卡路徑約束和岸橋實際操作情況等實際約束,構建瞭邊裝邊卸的混閤整數規劃模型。由于模型比較複雜,因此採用瞭分層方法來實現兩種設備的協調調度,併用改進的遺傳算法來求解模型。實驗錶明,通過將改進算法的結果與標準化軟件CPLEX所求得的最優解或下界比較,算法求得6組最優解且剩餘算例平均偏差小于5%;在求解時間方麵,隨著岸橋、集卡和集裝箱數量的增加,CPLEX求解時間跨度由1 s到1 h快速增長,而改進算法求解卻僅僅需要幾十秒,因此說明改進的算法可以快速有效地解決岸橋和集卡的協同調度問題。
안교분배여집잡조도시상호련계상호영향적문제,여과요제고마두장사효솔,취필수협조호량자적조도관계。침대집장상마두안교화집잡적협동조도문제,이사진구상화출구상적총완공시간최단위목적,고필료집잡로경약속화안교실제조작정황등실제약속,구건료변장변사적혼합정수규화모형。유우모형비교복잡,인차채용료분층방법래실현량충설비적협조조도,병용개진적유전산법래구해모형。실험표명,통과장개진산법적결과여표준화연건CPLEX소구득적최우해혹하계비교,산법구득6조최우해차잉여산례평균편차소우5%;재구해시간방면,수착안교、집잡화집장상수량적증가,CPLEX구해시간과도유1 s도1 h쾌속증장,이개진산법구해각부부수요궤십초,인차설명개진적산법가이쾌속유효지해결안교화집잡적협동조도문제。
Quay crane and truck scheduling are interrelated issues with mutual influence. In order to improve port handling efficiency, it is necessary to coordinate them in a good relationship. The scheduling problem was solved by formulating a mixed integer programming ( MIP ) model which consider both loading and unloading. The goal of this model was to minimize the completion time of both import and export containers. Due to the complexity of the problem, a layered approach was used for the solution of the two devices scheduling. Meanwhile, an improved genetic algorithm was used to solve the model. The new method was compared with CPLEX. The experiment demonstrates that the improved genetic algorithm obtains optimal solution for six cases of total cases and the aver-age gap of left cases is less than 5%. Numerical experiments show that the proposed algorithm can efficiently handle the problem within a limited time. In solving time, along with the increase of the number of trucks, the time span of the CPLEX solutions differs from the 1 second to 1 hour, but the improved algorithm only need dozens of seconds to solve the problem. Thus, the improved algorithm can effectively solve such problem.