中国数字医学
中國數字醫學
중국수자의학
CHINA DIGITAL MEDICINE
2015年
6期
57-61
,共5页
李长树%卢启贵%黄东红%李政%沈云龙%郑英慧%陆文杰%唐雷
李長樹%盧啟貴%黃東紅%李政%瀋雲龍%鄭英慧%陸文傑%唐雷
리장수%로계귀%황동홍%리정%침운룡%정영혜%륙문걸%당뢰
新鲜尸体%股骨干%虚拟手术%钻削%力反馈
新鮮尸體%股骨榦%虛擬手術%鑽削%力反饋
신선시체%고골간%허의수술%찬삭%력반궤
fresh cadaver%femoral shaft%virtual surgery%drilling%force feedback
目的:采集新鲜尸体股骨干不同骨质层和骨段的钻削进给力与扭矩数据,为骨科虚拟现实手术系统钻削力反馈信号的输出提供特性依据。方法:改装万能材料试验机和手持可调速电钻(钻头直径d=Φ4.5、Φ5.0、Φ5.5mm)构建生物组织机械性能参数采集系统,分别以n=500r/min、800r/min、1200r/min电钻转速和v=10mm/min、20mm/min、30mm/min进给速度采集9具新鲜尸体股骨干405个标记点的钻削进给力F与扭矩M,分析其变化特性与相应组织和部位的关系。结果:新鲜尸体股骨干的钻削进给力F与扭矩M大小波动范围分别为26.47-68.29N与0.11-1.81N×m;当d=4.5mm、v=10mm/min、n=1200r/min时,钻削进给力最小 min=31.8N;当d=4.5mm、v=10mm/min、n=500r/min时,钻削扭矩最小 min=0.14N×m;当d=5.5mm、v=30mm/min、n=500r/min时,钻削进给力最大 max=65.95N;当d=5.5mm、v=30mm/min、n=1200r/min时,钻削扭矩最大 max=1.74N×m。骨骼钻削进给力及扭矩与电钻转速、进给速度、钻头直径、骨骼密度关系密切,其中电钻转速越小、进给速度越大、钻头直径越大、骨骼密度越密,骨骼钻削进给力越大,反之越小;电钻转速越大、进给速度越大、钻头直径越大、骨骼密度越密,骨骼钻削扭矩越大,反之越小。结论:本实验所获新鲜尸体股骨干钻削进给力与扭矩数据及其变化趋势,可为虚拟骨科手术系统力反馈输出信号设置提供依据。
目的:採集新鮮尸體股骨榦不同骨質層和骨段的鑽削進給力與扭矩數據,為骨科虛擬現實手術繫統鑽削力反饋信號的輸齣提供特性依據。方法:改裝萬能材料試驗機和手持可調速電鑽(鑽頭直徑d=Φ4.5、Φ5.0、Φ5.5mm)構建生物組織機械性能參數採集繫統,分彆以n=500r/min、800r/min、1200r/min電鑽轉速和v=10mm/min、20mm/min、30mm/min進給速度採集9具新鮮尸體股骨榦405箇標記點的鑽削進給力F與扭矩M,分析其變化特性與相應組織和部位的關繫。結果:新鮮尸體股骨榦的鑽削進給力F與扭矩M大小波動範圍分彆為26.47-68.29N與0.11-1.81N×m;噹d=4.5mm、v=10mm/min、n=1200r/min時,鑽削進給力最小 min=31.8N;噹d=4.5mm、v=10mm/min、n=500r/min時,鑽削扭矩最小 min=0.14N×m;噹d=5.5mm、v=30mm/min、n=500r/min時,鑽削進給力最大 max=65.95N;噹d=5.5mm、v=30mm/min、n=1200r/min時,鑽削扭矩最大 max=1.74N×m。骨骼鑽削進給力及扭矩與電鑽轉速、進給速度、鑽頭直徑、骨骼密度關繫密切,其中電鑽轉速越小、進給速度越大、鑽頭直徑越大、骨骼密度越密,骨骼鑽削進給力越大,反之越小;電鑽轉速越大、進給速度越大、鑽頭直徑越大、骨骼密度越密,骨骼鑽削扭矩越大,反之越小。結論:本實驗所穫新鮮尸體股骨榦鑽削進給力與扭矩數據及其變化趨勢,可為虛擬骨科手術繫統力反饋輸齣信號設置提供依據。
목적:채집신선시체고골간불동골질층화골단적찬삭진급력여뉴구수거,위골과허의현실수술계통찬삭력반궤신호적수출제공특성의거。방법:개장만능재료시험궤화수지가조속전찬(찬두직경d=Φ4.5、Φ5.0、Φ5.5mm)구건생물조직궤계성능삼수채집계통,분별이n=500r/min、800r/min、1200r/min전찬전속화v=10mm/min、20mm/min、30mm/min진급속도채집9구신선시체고골간405개표기점적찬삭진급력F여뉴구M,분석기변화특성여상응조직화부위적관계。결과:신선시체고골간적찬삭진급력F여뉴구M대소파동범위분별위26.47-68.29N여0.11-1.81N×m;당d=4.5mm、v=10mm/min、n=1200r/min시,찬삭진급력최소 min=31.8N;당d=4.5mm、v=10mm/min、n=500r/min시,찬삭뉴구최소 min=0.14N×m;당d=5.5mm、v=30mm/min、n=500r/min시,찬삭진급력최대 max=65.95N;당d=5.5mm、v=30mm/min、n=1200r/min시,찬삭뉴구최대 max=1.74N×m。골격찬삭진급력급뉴구여전찬전속、진급속도、찬두직경、골격밀도관계밀절,기중전찬전속월소、진급속도월대、찬두직경월대、골격밀도월밀,골격찬삭진급력월대,반지월소;전찬전속월대、진급속도월대、찬두직경월대、골격밀도월밀,골격찬삭뉴구월대,반지월소。결론:본실험소획신선시체고골간찬삭진급력여뉴구수거급기변화추세,가위허의골과수술계통력반궤수출신호설치제공의거。
Objective: In order to collect the size and trend of drilling feed force and torque on the different layer of fresh cadaver femoral bone,which will provide a basis signal of collecting and outputting drilling feed force feedback in orthopedic virtual surgery system. Methods: The biological bone drilling feed force testing system is built by modifying the universal material testing machine with adjustable speed electric drill (Φ4.5、5.0、5.5mm drill bit); Collect the magnitude of drilling feed force and torque of 9 fresh cadaver femoral shaft (405drilling markers) with three different rotate speed (n=500r/min、800 r/min、1200 r/min) and three different feed speed (v=10mm/min、20 mm/min、30 mm/min), and analysis their variation trends. Results: The fluctuation range of fresh cadaver femoral drilling feed force F and torque M were 26.47-68.29N and 0.11-1.81N×m, respectively; When d=4.5mm, v=10mm/min, n=1200r/min, the drilling feed force was least min=31.8N; When d=4.5mm, v=10mm/min, n=500r/min, the drilling torque was least min=0.14N×m;When d=5.5mm, v=30mm/min, n=500r/min, the drilling feed force was largest max=65.59N;When d=5.5mm, v=30mm/min, n=1200r/min, the drilling torque was least max=1.74N×m. The size and trend of drilling feed force and torque have a close relationship with the drill speed, feed speed, drill diameter, bone density. The drill speed is smaller, the feed speed is bigger, the diameter of drill bit is greater, and with a higher bone's density, the size of drilling feed force is larger, vice versa. The drill speed is larger, the feed speed is bigger, the diameter of drill bit is greater, and with a higher bone's density, the size of drilling torque is larger, vice versa. Conclusions:Accurate fresh cadaver femoral drilling feed force and torque data, which were obtained in this experiment, could provide reliable basis for the force-feedback signal output of the virtual orthopedic surgery system.