北京生物医学工程
北京生物醫學工程
북경생물의학공정
BEIJING BIOMEDICAL ENGINEERING
2015年
3期
261-266
,共6页
ECG%波形识别%几何特征%QRS波群
ECG%波形識彆%幾何特徵%QRS波群
ECG%파형식별%궤하특정%QRS파군
ECG%waveform recognition%geometric characteristics%QRS complex
目的:ECG自动分析系统由两部分组成:波形识别和智能诊断。在实际应用中,心电波形识别是该系统的关键。波形识别的精确性和可靠性决定了心脏病诊断的可靠性。为提高波形识别的速率及准确度,本文提出一种基于几何特征的ECG波形识别算法。方法首先利用数字滤波算法对信号进行预处理,提高信号的信噪比,然后通过改进的二阶导数计算出数据的几何特征:点的斜率和运动趋势,并在此基础上,结合ECG波形的实际物理特征,利用算法实现T波、P波、QRS波群的起点、终点以及波峰波谷的自动识别。结果统计分析结果表明,本算法能够快速高效地识别ECG波形。同时将该算法与其他当前各种ECG波形识别算法进行对比,该识别算法在识别的精确性与阳性预测值方面具有更好的性能。结论本文提出的基于几何特征的ECG波形识别算法可以进一步提高当前ECG波形识别算法的性能。
目的:ECG自動分析繫統由兩部分組成:波形識彆和智能診斷。在實際應用中,心電波形識彆是該繫統的關鍵。波形識彆的精確性和可靠性決定瞭心髒病診斷的可靠性。為提高波形識彆的速率及準確度,本文提齣一種基于幾何特徵的ECG波形識彆算法。方法首先利用數字濾波算法對信號進行預處理,提高信號的信譟比,然後通過改進的二階導數計算齣數據的幾何特徵:點的斜率和運動趨勢,併在此基礎上,結閤ECG波形的實際物理特徵,利用算法實現T波、P波、QRS波群的起點、終點以及波峰波穀的自動識彆。結果統計分析結果錶明,本算法能夠快速高效地識彆ECG波形。同時將該算法與其他噹前各種ECG波形識彆算法進行對比,該識彆算法在識彆的精確性與暘性預測值方麵具有更好的性能。結論本文提齣的基于幾何特徵的ECG波形識彆算法可以進一步提高噹前ECG波形識彆算法的性能。
목적:ECG자동분석계통유량부분조성:파형식별화지능진단。재실제응용중,심전파형식별시해계통적관건。파형식별적정학성화가고성결정료심장병진단적가고성。위제고파형식별적속솔급준학도,본문제출일충기우궤하특정적ECG파형식별산법。방법수선이용수자려파산법대신호진행예처리,제고신호적신조비,연후통과개진적이계도수계산출수거적궤하특정:점적사솔화운동추세,병재차기출상,결합ECG파형적실제물리특정,이용산법실현T파、P파、QRS파군적기점、종점이급파봉파곡적자동식별。결과통계분석결과표명,본산법능구쾌속고효지식별ECG파형。동시장해산법여기타당전각충ECG파형식별산법진행대비,해식별산법재식별적정학성여양성예측치방면구유경호적성능。결론본문제출적기우궤하특정적ECG파형식별산법가이진일보제고당전ECG파형식별산법적성능。
Objective ECG analysis diagnosis system mainly consists of two phases: waveform recognition and intelligent diagnosis .Accuracy and reliability of ECG waveform recognition determine the diagnosis and treatment of heart disease .A waveform recognition algorithm based on geometric characteristics is proposed in this paper to improve the detection rate and accuracy of waveform recognition .Methods Firstly, signals are preprocessed to improve noise ratio by digital filtering algorithm .Secondly , we calculate certain geometric characteristics such as the slope and the movement tendency of points with improved second derivative.Finally, we can automatically recognize the onset , the offset, the peak and the trough of T wave , P wave, QRS complex with the actual physical characteristics of ECG waveform on the basis of the previous results.Results Statistical analysis shows that our method can recognize the ECG wave fast and effectively .We also compare this method with other ECG waveform recognition algorithms . The results indicate that the proposed method results in better performance in the sensitivity ( Se) and positive predictive ( PP) than other methods.Conclusions The proposed method makes improvement on current ECG waveform recognition methods.