北京生物医学工程
北京生物醫學工程
북경생물의학공정
BEIJING BIOMEDICAL ENGINEERING
2015年
3期
256-260
,共5页
韩志军%杨帮华%何美燕%刘丽
韓誌軍%楊幫華%何美燕%劉麗
한지군%양방화%하미연%류려
脑机接口%RLS自适应滤波器%独立分量分析%共同空间模式%增量式支持向量机%样本熵
腦機接口%RLS自適應濾波器%獨立分量分析%共同空間模式%增量式支持嚮量機%樣本熵
뇌궤접구%RLS자괄응려파기%독립분량분석%공동공간모식%증량식지지향량궤%양본적
brain computer interface%recursive least-squares%independent component analysis%common spatial patterns%incremental support vector machine%sample entropy
目的:针对脑机接口中三类运动想象任务,提出一种最小二乘法自适应滤波结合独立成分分析以及样本熵( RLS-ICA-SampEn )、多类共同空间模式( CSP )、增量式支持向量机( ISVM )相结合的脑电识别新方法,以解决脑机接口中多类运动想象正确率低的问题。方法首先采用ICA将EEG分离,然后利用样本熵自动识别分离后的噪声,再采用RLS对识别出来的噪声进行滤波,最后进行信号重构,得到去除噪声的脑电信号。多类CSP采用“一对一”CSP与多频段滤波相结合,对去噪后的脑电信号进行特征提取。通过“一对多”方式的ISVM对三类运动想象脑电信号获取的特征向量进行分类。为检验新方法的有效性,将本文方法与多类CSP+ISVM(方法1)及RLS-ICA+多类CSP+ISVM(方法2)进行比较。结果对三类想象任务而言,本文方法识别正确率与方法1和2相比均高8%左右。结论与方法1和2比较,RLS-ICA-SampEn、多类CSP、ISVM相结合的脑电识别新方法能更好地适用于多类运动想象任务识别。
目的:針對腦機接口中三類運動想象任務,提齣一種最小二乘法自適應濾波結閤獨立成分分析以及樣本熵( RLS-ICA-SampEn )、多類共同空間模式( CSP )、增量式支持嚮量機( ISVM )相結閤的腦電識彆新方法,以解決腦機接口中多類運動想象正確率低的問題。方法首先採用ICA將EEG分離,然後利用樣本熵自動識彆分離後的譟聲,再採用RLS對識彆齣來的譟聲進行濾波,最後進行信號重構,得到去除譟聲的腦電信號。多類CSP採用“一對一”CSP與多頻段濾波相結閤,對去譟後的腦電信號進行特徵提取。通過“一對多”方式的ISVM對三類運動想象腦電信號穫取的特徵嚮量進行分類。為檢驗新方法的有效性,將本文方法與多類CSP+ISVM(方法1)及RLS-ICA+多類CSP+ISVM(方法2)進行比較。結果對三類想象任務而言,本文方法識彆正確率與方法1和2相比均高8%左右。結論與方法1和2比較,RLS-ICA-SampEn、多類CSP、ISVM相結閤的腦電識彆新方法能更好地適用于多類運動想象任務識彆。
목적:침대뇌궤접구중삼류운동상상임무,제출일충최소이승법자괄응려파결합독립성분분석이급양본적( RLS-ICA-SampEn )、다류공동공간모식( CSP )、증량식지지향량궤( ISVM )상결합적뇌전식별신방법,이해결뇌궤접구중다류운동상상정학솔저적문제。방법수선채용ICA장EEG분리,연후이용양본적자동식별분리후적조성,재채용RLS대식별출래적조성진행려파,최후진행신호중구,득도거제조성적뇌전신호。다류CSP채용“일대일”CSP여다빈단려파상결합,대거조후적뇌전신호진행특정제취。통과“일대다”방식적ISVM대삼류운동상상뇌전신호획취적특정향량진행분류。위검험신방법적유효성,장본문방법여다류CSP+ISVM(방법1)급RLS-ICA+다류CSP+ISVM(방법2)진행비교。결과대삼류상상임무이언,본문방법식별정학솔여방법1화2상비균고8%좌우。결론여방법1화2비교,RLS-ICA-SampEn、다류CSP、ISVM상결합적뇌전식별신방법능경호지괄용우다류운동상상임무식별。
Objective For multi-class motor imagery tasks in brain computer interface ( BCI ) , this paper presents a novel recognition method of electroencephalography ( EEG) by combining RLS-ICA-SampEn [ RLS ( recursive least-squares ) , ICA ( independent component analysis ) , SampEn ( sample entropy ) ] , multi-class CSP (common spatial patterns) and ISVM (incremental support vector machine ).Methods In the RLS-ICA-SampEn, Firstly, the ICA is used to decompose the contaminated EEG signals into independent components (IC).Then, the sample entropy is used to automatically identify the noise signal in the IC .Next, the RLS adaptive filters are applied to the identified noise in IC to remove noise further .Finally, the processed ICs are then projected back to reconstruct the noise-free EEG signals.The RLS-ICA-SampEn is used to preprocess EEG signals to get pure EEG signals , in which some noise signals can be removed .The multi-class CSP combines the CSP and the multi-band filtering technology , in which the CSP uses the ‘one versus one ’ strategy.The multi-class CSP is used to extract featuresfor pure EEG signals.The obtained features are input tothe ISVM for classification.The ‘one versus rest’ strategyis applied to classify three-class EEG signals.In order toverify the effectiveness of the proposed novel method , it iscompared with other two methods including multi CSP +ISVM(method 1), RLS-ICA +multi CSP +ISVM(method 2).Results The result shows that the recognitionaccuracy obtained by the proposed method is higher about 8% than other two methods.Conclusions Comparedwith method 1 and 2, the proposed method is better suited for the recognition of multi -class motor imagery tasksin BCI.