工业催化
工業催化
공업최화
INDUSTRIAL CATALYSIS
2015年
5期
378-383
,共6页
徐聪%魏璨%孙锦昌%张谦温
徐聰%魏璨%孫錦昌%張謙溫
서총%위찬%손금창%장겸온
催化剂工程%Al2O3载体%双峰孔分布%压汞法%孔结构调节剂%孔径分布
催化劑工程%Al2O3載體%雙峰孔分佈%壓汞法%孔結構調節劑%孔徑分佈
최화제공정%Al2O3재체%쌍봉공분포%압홍법%공결구조절제%공경분포
catalyst engineering%Al2 O3 support%bimodal pore distribution%mercury intrusion method%pore structure regulator%pore size distribution
采用两种不同孔径分布的拟薄水铝石干胶粉,制备呈明显双峰孔分布的Al2 O3载体。考察原料粉体、孔结构调节剂种类和用量以及焙烧温度等对Al2 O3载体的孔分布的影响,并采用N2物理吸附法和高压压汞法分析载体孔结构。结果表明,两种干胶粉按质量1:1混合时,能改变单一粉体的堆积状态,制得载体兼具单一原料制备载体时的孔分布,孔容达到最大,为1.58 cm3·g-1,且孔径分布集中在(10~100)nm和300 nm以上;加入不同孔结构调节剂后,对载体孔径分布调节作用相似,孔径分布更为集中;添加质量分数5%尿素后,(10~100)nm孔径分布达到62.1%;载体的比表面积随尿素含量增加依次降低,适量添加调节剂可制得所需最佳孔径分布;载体在约920℃焙烧时,晶型为γ相和δ相的混合相。
採用兩種不同孔徑分佈的擬薄水鋁石榦膠粉,製備呈明顯雙峰孔分佈的Al2 O3載體。攷察原料粉體、孔結構調節劑種類和用量以及焙燒溫度等對Al2 O3載體的孔分佈的影響,併採用N2物理吸附法和高壓壓汞法分析載體孔結構。結果錶明,兩種榦膠粉按質量1:1混閤時,能改變單一粉體的堆積狀態,製得載體兼具單一原料製備載體時的孔分佈,孔容達到最大,為1.58 cm3·g-1,且孔徑分佈集中在(10~100)nm和300 nm以上;加入不同孔結構調節劑後,對載體孔徑分佈調節作用相似,孔徑分佈更為集中;添加質量分數5%尿素後,(10~100)nm孔徑分佈達到62.1%;載體的比錶麵積隨尿素含量增加依次降低,適量添加調節劑可製得所需最佳孔徑分佈;載體在約920℃焙燒時,晶型為γ相和δ相的混閤相。
채용량충불동공경분포적의박수려석간효분,제비정명현쌍봉공분포적Al2 O3재체。고찰원료분체、공결구조절제충류화용량이급배소온도등대Al2 O3재체적공분포적영향,병채용N2물리흡부법화고압압홍법분석재체공결구。결과표명,량충간효분안질량1:1혼합시,능개변단일분체적퇴적상태,제득재체겸구단일원료제비재체시적공분포,공용체도최대,위1.58 cm3·g-1,차공경분포집중재(10~100)nm화300 nm이상;가입불동공결구조절제후,대재체공경분포조절작용상사,공경분포경위집중;첨가질량분수5%뇨소후,(10~100)nm공경분포체도62.1%;재체적비표면적수뇨소함량증가의차강저,괄량첨가조절제가제득소수최가공경분포;재체재약920℃배소시,정형위γ상화δ상적혼합상。
Al2 O3 supports with bimodal pore-distribution were prepared by two kinds of pseudo-boehmite powder with different pore diameter distribution. The influence of preparation conditions such as raw materials,the kinds and dosage of pore structure regulators and calcination temperatures on pore size distribution of Al2 O3 supports was investigated. Al2 O3 supports were characterized by BET and high pressure mercury porosimetry. The results showed that Al2 O3 support prepared by blend powder with mass ratio 1:1 exhibited pore size distribution specialties of two raw materials and possessed maximum pore volume, 1. 58 cm3 ·g-1 . Moreover,its pore diameter focused on(10-100)nm and above 300 nm. Different pore structure regulators played a similar role in the adjustment of pore size distribution of the supports,and pore diameter distribution was more concentrated. Being added urea mass fraction 5%,the pore size distri-bution with pore diameter(10-100)nm reached 62. 1%;the surface area of the supports was decreased with the increase of urea contents,and the best pore size distribution could be obtained by adding proper amount of regulator;the crystal structure of all supports were composed of general γ-Al2 O3 and bitδ-Al2 O3 when they were calcined at 920 ℃.