计算机工程与应用
計算機工程與應用
계산궤공정여응용
COMPUTER ENGINEERING AND APPLICATIONS
2015年
13期
245-250
,共6页
唐晓勇%江亚群%黄纯%彭江锴%戴永梁
唐曉勇%江亞群%黃純%彭江鍇%戴永樑
당효용%강아군%황순%팽강개%대영량
配电网%线损%RBF神经网络%差分进化%自适应二次变异
配電網%線損%RBF神經網絡%差分進化%自適應二次變異
배전망%선손%RBF신경망락%차분진화%자괄응이차변이
distribution systems%power loss%RBF Neural Network(RBFNN)%differential evolution%adaptive second mutation
针对中压配电网结构复杂,运行数据不全,常规网损计算方法难以实施的问题,提出了一种配电网线损的实用计算方法。利用RBF神经网络的强拟合特性,映射配电线路的特征参量与线损之间复杂的非线性关系,记忆配电线路在结构参数和运行参数变化时线损的变化规律,建立了基于RBF神经网络的线损计算模型。采用改进的自适应二次变异差分进化(ASMDE)算法,对RBF神经网络的结构参数进行整体优化,克服了常规算法隐含层与输出层结构参数分开确定,输出层易陷入局部极小的缺点。实例仿真验证了所提方法的有效性和实用性。
針對中壓配電網結構複雜,運行數據不全,常規網損計算方法難以實施的問題,提齣瞭一種配電網線損的實用計算方法。利用RBF神經網絡的彊擬閤特性,映射配電線路的特徵參量與線損之間複雜的非線性關繫,記憶配電線路在結構參數和運行參數變化時線損的變化規律,建立瞭基于RBF神經網絡的線損計算模型。採用改進的自適應二次變異差分進化(ASMDE)算法,對RBF神經網絡的結構參數進行整體優化,剋服瞭常規算法隱含層與輸齣層結構參數分開確定,輸齣層易陷入跼部極小的缺點。實例倣真驗證瞭所提方法的有效性和實用性。
침대중압배전망결구복잡,운행수거불전,상규망손계산방법난이실시적문제,제출료일충배전망선손적실용계산방법。이용RBF신경망락적강의합특성,영사배전선로적특정삼량여선손지간복잡적비선성관계,기억배전선로재결구삼수화운행삼수변화시선손적변화규률,건립료기우RBF신경망락적선손계산모형。채용개진적자괄응이차변이차분진화(ASMDE)산법,대RBF신경망락적결구삼수진행정체우화,극복료상규산법은함층여수출층결구삼수분개학정,수출층역함입국부겁소적결점。실례방진험증료소제방법적유효성화실용성。
In view of the problem that the structure of medium voltage distribution network is complex, operation data is incomplete, conventional power loss calculation methods are difficult to implement, a practical method of calculating power loss in distribution system is presented. By establishing the corresponding RBF Neural Network model, the method takes advantage of the strong regression ability of RBF Neural Network to map complex non-linear relation between power loss and feature parameters of distribution net, and memorizes the rule of power loss varying with distribution circuit structure and operation parameters. Adopting improved Adaptive Second Mutation Differential Evolution(ASMDE)algorithm to optimize integrally the structure parameters of RBF Neural Network, the method overcomes the shortcomings that conven-tional differential evolution algorithm is easy to fall into local optimum and the hidden layer and output layer structure parameters are determined separately. The simulation results prove the validity and practicability of the proposed method.