城市建设理论研究(电子版)
城市建設理論研究(電子版)
성시건설이론연구(전자판)
ChengShi Jianshe LiLun Yan Jiu
2015年
14期
553-555
,共3页
层状介质结构%弹性波%有限元%界面粗糙度
層狀介質結構%彈性波%有限元%界麵粗糙度
층상개질결구%탄성파%유한원%계면조조도
layered media structure%elasti cwave%finite element%interface roughness
利用有限元研究混凝土-岩土层状介质中弹性波的传播问题,对混凝土-岩土界面粗糙度进行量化,建立了界面曲率分别为0、0.25、0.50、0.75、1.00五组数值模拟模型.通过ANSYS瞬态动力分析得到弹性波在五组模型中传播的时域信号,然后对其进行快速傅里叶变换和短时傅里叶变换分别得到频域信号和时频信号,最后结合弹性波波形及能量、频率以及表征反射效应的时频分析评价层状介质界面粗糙度对弹性波传播的影响.结果表明:反射信号接收点时频关系中共振周期随表征界面粗糙度的界面曲率增加呈递增趋势,共振频率呈递减趋势,当界面粗糙程度超出一定值时,趋势相反;通过快速傅里叶变换得到的频谱关系中共振频率与入射信号频率差值随界面曲率增加逐渐缩小.
利用有限元研究混凝土-巖土層狀介質中彈性波的傳播問題,對混凝土-巖土界麵粗糙度進行量化,建立瞭界麵麯率分彆為0、0.25、0.50、0.75、1.00五組數值模擬模型.通過ANSYS瞬態動力分析得到彈性波在五組模型中傳播的時域信號,然後對其進行快速傅裏葉變換和短時傅裏葉變換分彆得到頻域信號和時頻信號,最後結閤彈性波波形及能量、頻率以及錶徵反射效應的時頻分析評價層狀介質界麵粗糙度對彈性波傳播的影響.結果錶明:反射信號接收點時頻關繫中共振週期隨錶徵界麵粗糙度的界麵麯率增加呈遞增趨勢,共振頻率呈遞減趨勢,噹界麵粗糙程度超齣一定值時,趨勢相反;通過快速傅裏葉變換得到的頻譜關繫中共振頻率與入射信號頻率差值隨界麵麯率增加逐漸縮小.
이용유한원연구혼응토-암토층상개질중탄성파적전파문제,대혼응토-암토계면조조도진행양화,건립료계면곡솔분별위0、0.25、0.50、0.75、1.00오조수치모의모형.통과ANSYS순태동력분석득도탄성파재오조모형중전파적시역신호,연후대기진행쾌속부리협변환화단시부리협변환분별득도빈역신호화시빈신호,최후결합탄성파파형급능량、빈솔이급표정반사효응적시빈분석평개층상개질계면조조도대탄성파전파적영향.결과표명:반사신호접수점시빈관계중공진주기수표정계면조조도적계면곡솔증가정체증추세,공진빈솔정체감추세,당계면조조정도초출일정치시,추세상반;통과쾌속부리협변환득도적빈보관계중공진빈솔여입사신호빈솔차치수계면곡솔증가축점축소.
Studying the propagation of elastic wave in Concrete-Rock layered media by using finite element method.Five models that curvature of the interface were 0,0.25,0.50,0.75,1.00 were established to quantify the interfacial roughness.The time-domain signal of elastic wave propagation in five models was calculated by ANSYS transient dynamic analysis,according the method of FFT and STFT to obtain the frequency-domain and time-frequency domain,and comprehensive evaluation of the impact of interface roughness to elastic wave propagation on layered medium by the elastic wave shape and energy , frequency, and time -frequency analysis. The results demonstrate that resonance cycle in time-frequency showed an increasing trend when the interface roughness increased,and resonance frequency showed an decreasing trend,as the roughness beyond special value,the trend is opposite;The difference between resonance frequency that is transformed from FFT and incoming signal frequency reduced gradual y with curvature increased.