计算机工程与应用
計算機工程與應用
계산궤공정여응용
COMPUTER ENGINEERING AND APPLICATIONS
2015年
13期
176-180,196
,共6页
混合高斯模型%C-V模型%高斯核函数%边缘停止函数%初始化曲线
混閤高斯模型%C-V模型%高斯覈函數%邊緣停止函數%初始化麯線
혼합고사모형%C-V모형%고사핵함수%변연정지함수%초시화곡선
Gaussian mixture model%C-V model%Gaussian kernel function%edge stop function%initialization curve
针对复杂的视频场景中目标追踪易受环境干扰的问题,提出了一种基于混合高斯模型和改进的C-V (Chan-Vese)模型相结合的新方法。其中采用了混合高斯模型算法更新背景,检测出运动目标轮廓。然后对提取出的目标轮廓进行后处理,标定出运动目标的质心和运动区域。将运动区域作为初始化曲线,用改进的C-V模型对运动目标进行拟合。结果证明了以标定出的运动目标区域为初始化曲线可以有效地提高轮廓曲线的收敛速度;对于灰度不均匀的和含有噪声的图像,改进的模型的分割效果也要好于C-V模型和LCV模型。
針對複雜的視頻場景中目標追蹤易受環境榦擾的問題,提齣瞭一種基于混閤高斯模型和改進的C-V (Chan-Vese)模型相結閤的新方法。其中採用瞭混閤高斯模型算法更新揹景,檢測齣運動目標輪廓。然後對提取齣的目標輪廓進行後處理,標定齣運動目標的質心和運動區域。將運動區域作為初始化麯線,用改進的C-V模型對運動目標進行擬閤。結果證明瞭以標定齣的運動目標區域為初始化麯線可以有效地提高輪廓麯線的收斂速度;對于灰度不均勻的和含有譟聲的圖像,改進的模型的分割效果也要好于C-V模型和LCV模型。
침대복잡적시빈장경중목표추종역수배경간우적문제,제출료일충기우혼합고사모형화개진적C-V (Chan-Vese)모형상결합적신방법。기중채용료혼합고사모형산법경신배경,검측출운동목표륜곽。연후대제취출적목표륜곽진행후처리,표정출운동목표적질심화운동구역。장운동구역작위초시화곡선,용개진적C-V모형대운동목표진행의합。결과증명료이표정출적운동목표구역위초시화곡선가이유효지제고륜곽곡선적수렴속도;대우회도불균균적화함유조성적도상,개진적모형적분할효과야요호우C-V모형화LCV모형。
Aiming at the problems that the target tracking is easily disturbed by the environment, this paper proposes a new algorithm based on Gaussian mixture model and the improved C-V(Chan-Vese)model. Firstly, the paper uses Gaussian mixture model to update the background and detect the contour of the moving target. Then, it does post-processing on the extracted target contour and calibrates the center of the moving target and the moving target region. Finally, the moving target region is used as the initialized curve and the improved C-V model is proposed to fit the moving target. Experimental results demonstrate that using the calibration movement target area as the initialized curve can effectively improve the convergence rate of the contour curve. Besides the segmentation of improved model is better than C-V model and LCV model in the uneven gray image and noise image.