计算机工程与应用
計算機工程與應用
계산궤공정여응용
COMPUTER ENGINEERING AND APPLICATIONS
2015年
13期
31-36
,共6页
粒子群优化算法%梯度搜索%繁殖法%自适应%惯性权重
粒子群優化算法%梯度搜索%繁殖法%自適應%慣性權重
입자군우화산법%제도수색%번식법%자괄응%관성권중
Particle Swarm Optimization(PSO)algorithm%gradient search%breeding method%self-adaption%inertia weight
提出了一种融合梯度搜索法、繁殖法并结合前N 个粒子历史最优位置的改进自适应粒子群优化算法。算法选用混沌惯性权重,每个粒子速度和位置的更新不仅考虑自身历史最优和全局最优位置,还受其他粒子历史最优位置的影响,且其影响程度的权重随迭代次数自适应变化;同时粒子位置随迭代次数以线性递增的概率进行负梯度方向更新;当粒子更新停滞时,对可能处于局部最优位置的部分粒子进行杂交。仿真实验结果表明,该算法比其他相关算法具有更好的收敛速度和收敛精度。
提齣瞭一種融閤梯度搜索法、繁殖法併結閤前N 箇粒子歷史最優位置的改進自適應粒子群優化算法。算法選用混沌慣性權重,每箇粒子速度和位置的更新不僅攷慮自身歷史最優和全跼最優位置,還受其他粒子歷史最優位置的影響,且其影響程度的權重隨迭代次數自適應變化;同時粒子位置隨迭代次數以線性遞增的概率進行負梯度方嚮更新;噹粒子更新停滯時,對可能處于跼部最優位置的部分粒子進行雜交。倣真實驗結果錶明,該算法比其他相關算法具有更好的收斂速度和收斂精度。
제출료일충융합제도수색법、번식법병결합전N 개입자역사최우위치적개진자괄응입자군우화산법。산법선용혼돈관성권중,매개입자속도화위치적경신불부고필자신역사최우화전국최우위치,환수기타입자역사최우위치적영향,차기영향정도적권중수질대차수자괄응변화;동시입자위치수질대차수이선성체증적개솔진행부제도방향경신;당입자경신정체시,대가능처우국부최우위치적부분입자진행잡교。방진실험결과표명,해산법비기타상관산법구유경호적수렴속도화수렴정도。
The paper proposes an improved adaptive Particle Swarm Optimization(PSO)algorithm which integrates gradient search method, breeding method and the all-time optimal location information of the first N particles. With chaotic inertia weight, the renewal of each particle’s speed and position is considered with not only the information of its own all-time and global optimal location information, but also the information of other all-time optimal location information, while the weights of other particles’all-time optimal location information change adaptively with the number of iterations;meanwhile, particles location updates in their negative gradient direction and the particle locations increase linearly with iterations;when the particles stop updating, cross may be hold in local optimum position. The experimental results verify that the algorithm has better convergence speed and convergence precision than those relevant algorithms.