高师理科学刊
高師理科學刊
고사이과학간
JOURNAL OF SCIENCE OF TEACHERS' COLLEGE AND UNIVERSITY
2015年
5期
18-22
,共5页
稳定性%Smith增长%捕食-食饵模型%Holling-Ⅱ类功能性反应
穩定性%Smith增長%捕食-食餌模型%Holling-Ⅱ類功能性反應
은정성%Smith증장%포식-식이모형%Holling-Ⅱ류공능성반응
stability%Smith growth%predator-prey model%Holling-Ⅱfunctional response
建立了一类食饵种群具有Smith增长的Holling-Ⅱ类捕食-食饵模型.运用微分方程稳定性理论研究了模型平衡点的稳定性,并得到平衡点全局渐近稳定的充分条件.利用环域定理证明了稳定极限环的存在性.对结论进行了生态解释,并且运用Matlab对平衡点的稳定性进行了仿真.
建立瞭一類食餌種群具有Smith增長的Holling-Ⅱ類捕食-食餌模型.運用微分方程穩定性理論研究瞭模型平衡點的穩定性,併得到平衡點全跼漸近穩定的充分條件.利用環域定理證明瞭穩定極限環的存在性.對結論進行瞭生態解釋,併且運用Matlab對平衡點的穩定性進行瞭倣真.
건립료일류식이충군구유Smith증장적Holling-Ⅱ류포식-식이모형.운용미분방정은정성이론연구료모형평형점적은정성,병득도평형점전국점근은정적충분조건.이용배역정리증명료은정겁한배적존재성.대결론진행료생태해석,병차운용Matlab대평형점적은정성진행료방진.
Constructed a predator-prey model with Smith growth of prey species and Holling-Ⅱfunctional response.Studied the stability of the equilibriums,gave the sufficient conditions of globally asymptotically stable for the equilibriums by the stability theory of ordinary differential equation.Then,the existence of a stable periodic solution was proved by ring theory.The ecological significances for the above conclusions were explained and the stability of the equilibriums are illustrated by Matlab.