工程科学学报
工程科學學報
공정과학학보
Journal of University of Science and Technology Beijing
2015年
6期
706-713
,共8页
冯庆晓%李龙飞%杨王玥%孙祖庆
馮慶曉%李龍飛%楊王玥%孫祖慶
풍경효%리룡비%양왕모%손조경
摇 TRIP钢%热轧%铌%微合金化%高温变形%固溶%析出%再结晶
搖 TRIP鋼%熱軋%鈮%微閤金化%高溫變形%固溶%析齣%再結晶
요 TRIP강%열알%니%미합금화%고온변형%고용%석출%재결정
TRIP steel%hot rolling%niobium%microalloying%hot deformation%solid solution%precipitation%recrystallization
通过Gleeble热模拟实验研究了含0.038% Nb (质量分数)的热轧TRIP钢在高温奥氏体区的热加工工艺,借助光学显微镜、扫描电镜和透射电镜分析了组织演变和Nb的析出行为,并利用电感耦合等离子体发射光谱仪定量分析了Nb的固溶/析出程度.在1250℃奥氏体化5 min后添加Nb有70%固溶于奥氏体.在1000℃以上的奥氏体再结晶区变形过程中Nb的析出量仅占总固溶量的3%,不能有效抑制静态再结晶,奥氏体晶粒得到明显细化.在900℃的奥氏体未再结晶区变形前析出Nb量已达到总固溶量的9%,再结晶被抑制而获得拉长状奥氏体.奥氏体未再结晶区变形可促进铁素体转变并细化铁素体晶粒.再结晶奥氏体或形变奥氏体状态下冷却至650℃时分别有占总添加量的48%和40%的Nb仍以固溶态存在.
通過Gleeble熱模擬實驗研究瞭含0.038% Nb (質量分數)的熱軋TRIP鋼在高溫奧氏體區的熱加工工藝,藉助光學顯微鏡、掃描電鏡和透射電鏡分析瞭組織縯變和Nb的析齣行為,併利用電感耦閤等離子體髮射光譜儀定量分析瞭Nb的固溶/析齣程度.在1250℃奧氏體化5 min後添加Nb有70%固溶于奧氏體.在1000℃以上的奧氏體再結晶區變形過程中Nb的析齣量僅佔總固溶量的3%,不能有效抑製靜態再結晶,奧氏體晶粒得到明顯細化.在900℃的奧氏體未再結晶區變形前析齣Nb量已達到總固溶量的9%,再結晶被抑製而穫得拉長狀奧氏體.奧氏體未再結晶區變形可促進鐵素體轉變併細化鐵素體晶粒.再結晶奧氏體或形變奧氏體狀態下冷卻至650℃時分彆有佔總添加量的48%和40%的Nb仍以固溶態存在.
통과Gleeble열모의실험연구료함0.038% Nb (질량분수)적열알TRIP강재고온오씨체구적열가공공예,차조광학현미경、소묘전경화투사전경분석료조직연변화Nb적석출행위,병이용전감우합등리자체발사광보의정량분석료Nb적고용/석출정도.재1250℃오씨체화5 min후첨가Nb유70%고용우오씨체.재1000℃이상적오씨체재결정구변형과정중Nb적석출량부점총고용량적3%,불능유효억제정태재결정,오씨체정립득도명현세화.재900℃적오씨체미재결정구변형전석출Nb량이체도총고용량적9%,재결정피억제이획득랍장상오씨체.오씨체미재결정구변형가촉진철소체전변병세화철소체정립.재결정오씨체혹형변오씨체상태하냉각지650℃시분별유점총첨가량적48%화40%적Nb잉이고용태존재.
ABSTRACT Hot-rolled TRIP steel with 0.038% Nb was thermomechanically processed on a Gleeble simulation test machine. The microstructural evolution and the precipitation behavior of Nb were analyzed by optical microscopy, scanning electron microscopy, and transmission electron microscopy. The amount of Nb in solution/precipitation was quantitatively measured by inductively coupled plas-ma optical emission spectrometry ( ICP-OES) . After austenization at 1250℃ for 5 min, about 70% of added Nb is dissolved into aus-tenite. During hot deformation in the austenitic recrystallized region above 1000℃, only 3% of dissolved Nb precipitates, which is too little to retard static recrystallization of austenite, and then the austenite grain size is markedly refined. Before hot deformation in the austenitic non-recrystallized region at 900℃, the fraction of precipitated Nb is up to 9%, which retards static recrystallization of aus-tenite after hot deformation and results in pancaked austenite grains. Hot deformation in the austenitic non-recrystallized region accel-erates the γ→αtransformation and refines the ferrite grains. After controlled-cooling to 650℃, there are still 48% and 40% of added Nb in solution after thermomechnical processing for recrystallized austenite and deformed austenite, respectively.