物理化学学报
物理化學學報
물이화학학보
ACTA PHYSICO-CHIMICA SINICA
2015年
6期
1179-1185
,共7页
梁祎%卢赟%姚维尚%张学同
樑祎%盧赟%姚維尚%張學同
량의%로빈%요유상%장학동
聚酰亚胺气凝胶%氧化石墨烯%交联%机械性能%收缩率
聚酰亞胺氣凝膠%氧化石墨烯%交聯%機械性能%收縮率
취선아알기응효%양화석묵희%교련%궤계성능%수축솔
Polyimide aerogel%Graphene oxide%Crosslinking%Mechanical property%Shrinkage ratio
聚酰亚胺(PI)气凝胶是一类密度低、机械性能好、隔热性能优异的多孔材料,通常使用昂贵的化学交联剂进行交联.氧化石墨烯(GO)是近年来广受关注的用于聚合物增强的纳米功能填料.以前报道的PI/GO复合材料多是纤维或膜的形式.为了获得PI/GO复合气凝胶,本文采用化学改性氧化石墨烯(m-GO)替代1,3,5-三(4-氨基苯氧基)苯(TAB)等常规的交联剂,使之与4,4′-二氨基二苯基醚(ODA)和3,3′,4,4′-联苯四羧酸二酐(BPDA)反应,制得了m-GO交联的PI气凝胶. GO的化学改性通过其与过量ODA在水热条件下反应实现.通过扫描电子显微镜(SEM)研究了PI/m-GO气凝胶的微观结构.分别通过氮气吸脱附测试、热重分析和热线法研究了m-GO对气凝胶的孔特性、热稳定性和热导率的影响.测试结果表明,所获得的PI/m-GO气凝胶保持了高的孔隙率、热稳定性和绝热性.压缩测试结果显示,与采用1.8%(质量分数, w)的TAB进行交联的PI气凝胶相比,仅用0.6%(w)的m-GO交联所获得的气凝胶具有更高的比杨氏模量(杨氏模量/密度)、比屈服强度(屈服强度/密度)和更小的体积收缩率.
聚酰亞胺(PI)氣凝膠是一類密度低、機械性能好、隔熱性能優異的多孔材料,通常使用昂貴的化學交聯劑進行交聯.氧化石墨烯(GO)是近年來廣受關註的用于聚閤物增彊的納米功能填料.以前報道的PI/GO複閤材料多是纖維或膜的形式.為瞭穫得PI/GO複閤氣凝膠,本文採用化學改性氧化石墨烯(m-GO)替代1,3,5-三(4-氨基苯氧基)苯(TAB)等常規的交聯劑,使之與4,4′-二氨基二苯基醚(ODA)和3,3′,4,4′-聯苯四羧痠二酐(BPDA)反應,製得瞭m-GO交聯的PI氣凝膠. GO的化學改性通過其與過量ODA在水熱條件下反應實現.通過掃描電子顯微鏡(SEM)研究瞭PI/m-GO氣凝膠的微觀結構.分彆通過氮氣吸脫附測試、熱重分析和熱線法研究瞭m-GO對氣凝膠的孔特性、熱穩定性和熱導率的影響.測試結果錶明,所穫得的PI/m-GO氣凝膠保持瞭高的孔隙率、熱穩定性和絕熱性.壓縮測試結果顯示,與採用1.8%(質量分數, w)的TAB進行交聯的PI氣凝膠相比,僅用0.6%(w)的m-GO交聯所穫得的氣凝膠具有更高的比楊氏模量(楊氏模量/密度)、比屈服彊度(屈服彊度/密度)和更小的體積收縮率.
취선아알(PI)기응효시일류밀도저、궤계성능호、격열성능우이적다공재료,통상사용앙귀적화학교련제진행교련.양화석묵희(GO)시근년래엄수관주적용우취합물증강적납미공능전료.이전보도적PI/GO복합재료다시섬유혹막적형식.위료획득PI/GO복합기응효,본문채용화학개성양화석묵희(m-GO)체대1,3,5-삼(4-안기분양기)분(TAB)등상규적교련제,사지여4,4′-이안기이분기미(ODA)화3,3′,4,4′-련분사최산이항(BPDA)반응,제득료m-GO교련적PI기응효. GO적화학개성통과기여과량ODA재수열조건하반응실현.통과소묘전자현미경(SEM)연구료PI/m-GO기응효적미관결구.분별통과담기흡탈부측시、열중분석화열선법연구료m-GO대기응효적공특성、열은정성화열도솔적영향.측시결과표명,소획득적PI/m-GO기응효보지료고적공극솔、열은정성화절열성.압축측시결과현시,여채용1.8%(질량분수, w)적TAB진행교련적PI기응효상비,부용0.6%(w)적m-GO교련소획득적기응효구유경고적비양씨모량(양씨모량/밀도)、비굴복강도(굴복강도/밀도)화경소적체적수축솔.
Polyimide (PI) aerogels, which are general y crosslinked using expensive chemical crosslinking agents, are novel porous materials with high strength, high heat resistance, high porosity, and low density. Graphene oxide (GO) is a functional nanofil er that has aroused wide interest in recent years. The reported PI/GO composites have mostly been in the form of fibers and films. In this study, PI/GO composite aerogels were obtained using chemical y modified graphene oxide (m-GO) as the crosslinking agent, instead of traditional ones such as 1,3,5-triaminophenoxybenzene (TAB), by reaction with 4,4′-oxydianiline (ODA) and 3,3′,4,4′-biphenyltetracarboxylic dianhydride (BPDA). The chemical modification of GO was achieved by reacting GO with excess ODA using a hydrothermal method. The microstructures of the PI/m-GO aerogels were investigated using scanning electron microscopy (SEM). Nitrogen sorption tests, thermogravimetric analysis, and a hot-wire method were used to investigate the effects of m-GO on the pore properties, thermal stabilities, and thermal conductivities, respectively, of the resulting aerogels. The results show that the PI/m-GO aerogels are highly porous, thermal y stable, and heat insulating. Compression tests showed that the PI aerogel prepared using 0.6%(mass fraction, w) m-GO instead of 1.8%(w) TAB as the crosslinking agent had a higher specific Young′s modulus [Young′s modulus/density (ρ)] and specific yield strength (yield strength/ρ), and less shrinkage.