光电工程
光電工程
광전공정
OPTO-ELECTRONIC ENGINEERING
2015年
6期
62-67
,共6页
左丹%蔡华祥%唐涛%张桐
左丹%蔡華祥%唐濤%張桐
좌단%채화상%당도%장동
频域特性%自抗扰控制器%速度闭环%参数整定%跟踪误差
頻域特性%自抗擾控製器%速度閉環%參數整定%跟蹤誤差
빈역특성%자항우공제기%속도폐배%삼수정정%근종오차
frequency-domain characteristics%Active Disturbance Rejection Controller(ADRC)%speed closed-loop%parameter tuning%tracking error
高性能的速度闭环控制是精密伺服控制系统的关键。针对速度换向时存在较大的换向误差的问题,提出了将自抗扰控制器用于精密伺服系统速度闭环的控制中。自抗扰控制器能对系统所受到的内扰和外扰进行实时估计,且不依赖于对象模型。本文基于控制对象的频域特性,设计了线性自抗扰控制器,找到了对象参数b与谐振频率的关系,并给出了其他参数的整定方法,为实验中参数调试提供了依据。最后,在带宽相同的情况下,将设计好的自抗扰控制器和常规的PI控制器分别用于速度闭环,进行了对比实验。结果表明在输入信号为0.5°和1.0°时,自抗扰控制器均能明显减小换向误差,提高系统跟踪精度。
高性能的速度閉環控製是精密伺服控製繫統的關鍵。針對速度換嚮時存在較大的換嚮誤差的問題,提齣瞭將自抗擾控製器用于精密伺服繫統速度閉環的控製中。自抗擾控製器能對繫統所受到的內擾和外擾進行實時估計,且不依賴于對象模型。本文基于控製對象的頻域特性,設計瞭線性自抗擾控製器,找到瞭對象參數b與諧振頻率的關繫,併給齣瞭其他參數的整定方法,為實驗中參數調試提供瞭依據。最後,在帶寬相同的情況下,將設計好的自抗擾控製器和常規的PI控製器分彆用于速度閉環,進行瞭對比實驗。結果錶明在輸入信號為0.5°和1.0°時,自抗擾控製器均能明顯減小換嚮誤差,提高繫統跟蹤精度。
고성능적속도폐배공제시정밀사복공제계통적관건。침대속도환향시존재교대적환향오차적문제,제출료장자항우공제기용우정밀사복계통속도폐배적공제중。자항우공제기능대계통소수도적내우화외우진행실시고계,차불의뢰우대상모형。본문기우공제대상적빈역특성,설계료선성자항우공제기,조도료대상삼수b여해진빈솔적관계,병급출료기타삼수적정정방법,위실험중삼수조시제공료의거。최후,재대관상동적정황하,장설계호적자항우공제기화상규적PI공제기분별용우속도폐배,진행료대비실험。결과표명재수입신호위0.5°화1.0°시,자항우공제기균능명현감소환향오차,제고계통근종정도。
High performance speed closed-loop control is the key to precision servo control system. According to the larger error of speed loop when reversing, an Active Disturbance Rejection Controller (ADRC) is put forward to speed closed-loop for precision servo control system. ADRC can estimate the internal and external disturbances in real time, and it does not depend on the object model. Based on the frequency-domain characteristics of controlled object, linear ADRC was designed, the relationship between the resonant frequency and the object parameterb was found, other parameters tuning method was presented, and all of these provided the basis for experiment parameter debugging. Finally, under the same bandwidth, the ADRC and conventional PI controller are applied in speed closed-loop respectively to make comparative experiments. Actual results show that ADRC can significantly reduce the reversing error and improve the system tracking accuracy when the input signal is 0.5° and 1.0°.