中国有色金属学报
中國有色金屬學報
중국유색금속학보
THE CHINESE JOURNAL OF NONFERROUS METALS
2015年
6期
1617-1624
,共8页
史茹倩%吴一%刘红%刘晨吉%郑树凯%王晓媛
史茹倩%吳一%劉紅%劉晨吉%鄭樹凱%王曉媛
사여천%오일%류홍%류신길%정수개%왕효원
4H-SiC%P掺杂%第一性原理%电导率
4H-SiC%P摻雜%第一性原理%電導率
4H-SiC%P참잡%제일성원리%전도솔
4H-SiC%P doping%first-principles%electrical conductivity
采用基于密度泛函理论的第一性原理平面波超软赝势方法,计算本征以及P替位式掺杂,P间隙式掺杂4H-SiC的晶格常数、能带结构、态密度、载流子浓度和电导率。结果表明:P掺杂减小了4H-SiC的禁带宽度,其中P替位C原子掺杂的禁带宽度最小。替位式掺杂导致4H-SiC的费米能级进入导带,使其成为n型半导体,间隙式掺杂使4H-SiC的费米能级接近导带并在其禁带中引入杂质能级。替位式掺杂后,4H-SiC的自由电子主要存在于导带底,而间隙式掺杂4H-SiC 中除了导带底外,禁带中的杂质能级也提供了自由电子,因此,电子浓度大幅度增加。掺杂4H-SiC 的载流子迁移率主要由中性杂质对电子的散射决定,较本征态的大幅度降低。通过计算4种体系的电导率可知,P替位Si原子掺杂4H-SiC的电导率最大,导电性最好。
採用基于密度汎函理論的第一性原理平麵波超軟贗勢方法,計算本徵以及P替位式摻雜,P間隙式摻雜4H-SiC的晶格常數、能帶結構、態密度、載流子濃度和電導率。結果錶明:P摻雜減小瞭4H-SiC的禁帶寬度,其中P替位C原子摻雜的禁帶寬度最小。替位式摻雜導緻4H-SiC的費米能級進入導帶,使其成為n型半導體,間隙式摻雜使4H-SiC的費米能級接近導帶併在其禁帶中引入雜質能級。替位式摻雜後,4H-SiC的自由電子主要存在于導帶底,而間隙式摻雜4H-SiC 中除瞭導帶底外,禁帶中的雜質能級也提供瞭自由電子,因此,電子濃度大幅度增加。摻雜4H-SiC 的載流子遷移率主要由中性雜質對電子的散射決定,較本徵態的大幅度降低。通過計算4種體繫的電導率可知,P替位Si原子摻雜4H-SiC的電導率最大,導電性最好。
채용기우밀도범함이론적제일성원리평면파초연안세방법,계산본정이급P체위식참잡,P간극식참잡4H-SiC적정격상수、능대결구、태밀도、재류자농도화전도솔。결과표명:P참잡감소료4H-SiC적금대관도,기중P체위C원자참잡적금대관도최소。체위식참잡도치4H-SiC적비미능급진입도대,사기성위n형반도체,간극식참잡사4H-SiC적비미능급접근도대병재기금대중인입잡질능급。체위식참잡후,4H-SiC적자유전자주요존재우도대저,이간극식참잡4H-SiC 중제료도대저외,금대중적잡질능급야제공료자유전자,인차,전자농도대폭도증가。참잡4H-SiC 적재류자천이솔주요유중성잡질대전자적산사결정,교본정태적대폭도강저。통과계산4충체계적전도솔가지,P체위Si원자참잡4H-SiC적전도솔최대,도전성최호。
The lattice parameters, band structures, density of states, carrier concentrations and electrical conductivities of pure 4H-SiC, P substitutional doped, and P interstitial doped 4H-SiC were calculated using the plan-wave ultra-soft pseudo-potential method based on the density functional theory. The results indicate that the P doping decreases the forbidden band widths of 4H-SiC, and the P substituted for C doped 4H-SiC shows the narrowest band gap. Substitutional doping makes the Fermi energy level introduces into the conduction band of 4H-SiC, and the 4H-SiC becomes an n-type semiconductor. Interstitial doping makes the Fermi energy level near the conduction band of 4H-SiC and introduces impurity energy levels into the forbidden band. The electrons of substitutional doped 4H-SiC mainly exist at the bottom of the conduction band. While the impurity energy levels in the forbidden band also provides electrons except those existing at the bottom of the conduction band of interstitial doped 4H-SiC, so, the electron concentration increases significantly. The carrier mobility of the doped 4H-SiC is mainly depending on the neutral impurity scattering and decreases significantly comparing to the intrinsic state. Through the calculations of the electrical conductivities of the four systems, it is found that the electrical conductivity of 4H-SiC with P substituted for Si is the biggest, and the 4H-SiC shows the best conductivity.