电子与信息学报
電子與信息學報
전자여신식학보
JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY
2015年
7期
1754-1759
,共6页
视觉跟踪%模板更新%字典学习%观测似然
視覺跟蹤%模闆更新%字典學習%觀測似然
시각근종%모판경신%자전학습%관측사연
Visual tracking%Template updating%Dictionary learning%Observation likelihood
现有子空间跟踪方法较好地解决了目标表观变化和遮挡问题,但是它对复杂背景下目标跟踪的鲁棒性较差。针对此问题,该文首先提出一种基于Fisher准则的在线判别式字典学习模型,利用块坐标下降和替换操作设计了该模型的在线学习算法用于视觉跟踪模板更新。其次,定义候选目标编码系数与目标样本编码系数均值之间的距离为系数误差,提出以候选目标的重构误差与系数误差的组合作为粒子滤波的观测似然跟踪目标。实验结果表明:与现有跟踪方法相比,该文跟踪方法具有较强的鲁棒性和较高的跟踪精度。
現有子空間跟蹤方法較好地解決瞭目標錶觀變化和遮擋問題,但是它對複雜揹景下目標跟蹤的魯棒性較差。針對此問題,該文首先提齣一種基于Fisher準則的在線判彆式字典學習模型,利用塊坐標下降和替換操作設計瞭該模型的在線學習算法用于視覺跟蹤模闆更新。其次,定義候選目標編碼繫數與目標樣本編碼繫數均值之間的距離為繫數誤差,提齣以候選目標的重構誤差與繫數誤差的組閤作為粒子濾波的觀測似然跟蹤目標。實驗結果錶明:與現有跟蹤方法相比,該文跟蹤方法具有較彊的魯棒性和較高的跟蹤精度。
현유자공간근종방법교호지해결료목표표관변화화차당문제,단시타대복잡배경하목표근종적로봉성교차。침대차문제,해문수선제출일충기우Fisher준칙적재선판별식자전학습모형,이용괴좌표하강화체환조작설계료해모형적재선학습산법용우시각근종모판경신。기차,정의후선목표편마계수여목표양본편마계수균치지간적거리위계수오차,제출이후선목표적중구오차여계수오차적조합작위입자려파적관측사연근종목표。실험결과표명:여현유근종방법상비,해문근종방법구유교강적로봉성화교고적근종정도。
The existing subspace tracking methods have well solved appearance changes and occlusions. However, they are weakly robust to complex background. To deal with this problem, firstly, this paper proposes an online discrimination dictionary learning model based on the Fisher criterion. The online discrimination dictionary learning algorithm for template updating in visual tracking is designed by using the block coordinate descent and replacing operations. Secondly, the distance between the target candidate coding coefficient and the mean of target samples coding coefficients is defined as the coefficient error. The robust visual tracking is achieved by taking the combination of the reconstruction error and the coefficient error as observation likelihood in particle filter framework. The experimental results show that the proposed method has better robustness and accuracy than the state-of-the-art trackers.