昆明学院学报
昆明學院學報
곤명학원학보
JOURNAL OF KUNMING UNIVERSITY
2015年
3期
105-109,125
,共6页
陈旻%王开云%贾学明%赵卿
陳旻%王開雲%賈學明%趙卿
진민%왕개운%가학명%조경
Context 建模%熵编码%描述长度%奇异测度
Context 建模%熵編碼%描述長度%奇異測度
Context 건모%적편마%묘술장도%기이측도
context modeling%entropy coding%description length%amazing measure
使用聚类算法实现 Context 量化不仅可以推广量化器的应用范围,而且可以获得编码性能较理想的优化量化器。然而,聚类算法依赖于相似测度。前期研究中采用的描述长度增量不能完全满足相似测度的各项属性,从而导致聚类结果的性能偏差。因此,提出数学描述特性更好的奇异测度增量作为两个计数向量的相似测度,并说明其相应性质。实验结果证明,使用奇异测度增量作为相似测度,不仅能够保证 Context 量化器的稳定性,而且还获得更佳的编码结果。
使用聚類算法實現 Context 量化不僅可以推廣量化器的應用範圍,而且可以穫得編碼性能較理想的優化量化器。然而,聚類算法依賴于相似測度。前期研究中採用的描述長度增量不能完全滿足相似測度的各項屬性,從而導緻聚類結果的性能偏差。因此,提齣數學描述特性更好的奇異測度增量作為兩箇計數嚮量的相似測度,併說明其相應性質。實驗結果證明,使用奇異測度增量作為相似測度,不僅能夠保證 Context 量化器的穩定性,而且還穫得更佳的編碼結果。
사용취류산법실현 Context 양화불부가이추엄양화기적응용범위,이차가이획득편마성능교이상적우화양화기。연이,취류산법의뢰우상사측도。전기연구중채용적묘술장도증량불능완전만족상사측도적각항속성,종이도치취류결과적성능편차。인차,제출수학묘술특성경호적기이측도증량작위량개계수향량적상사측도,병설명기상응성질。실험결과증명,사용기이측도증량작위상사측도,불부능구보증 Context 양화기적은정성,이차환획득경가적편마결과。
The context quantization based on the clustering algorithm can not only improve the application range but also get the optimizing quantizer with ideal coding efficiency.However,the clustering algorithm relies on the similarity measure.In the previous research,the increment of the description length is not suitable for the various attributes of similarity measure so as to cause the deviation of cluster result.So the increment of amazing measure with better mathematic descriptive feature as the similarity measure of two count vector quantity is proposed and its corresponding quality is stated.The results indicate that the application of increment of amazing measure as the similarity measure can not only guarantee the stability of Context quantizer,but also achieve better coding efficiency.