计算机应用与软件
計算機應用與軟件
계산궤응용여연건
COMPUTER APPLICATIONS AND SOFTWARE
2015年
6期
224-227
,共4页
指纹库定位算法%信号强度指示%Zigbee 传感器网络%多项式分区插值%粒子滤波
指紋庫定位算法%信號彊度指示%Zigbee 傳感器網絡%多項式分區插值%粒子濾波
지문고정위산법%신호강도지시%Zigbee 전감기망락%다항식분구삽치%입자려파
Fingerprint database positioning algorithm%Received signal strength indicator (RSSI)%Zigbee sensor networks%Polynomial partition interpolation%Particle filter
指纹库定位算法的关键在于根据不同参考节点的接受信号强度指示 RSSI(Receive signal strength indication)建立有效指纹信息数据库。传统的方法是在定位区域内标定多个信息采样点,而大量样本数据的采集会导致算法离线训练阶段工作量增大。Zigbee 传感器网络平台下,综合考虑了目标自身对信号的干扰以及节点数对函数逼近能力的影响,利用信号强度的非线性特性,提出了一种基于多项式分区插值的虚拟指纹库生成方法;同时使用粒子滤波对预估计的结果进行处理,以解决 RSSI 不规则分布问题。实验结果表明该方式可以快速、简捷地生成细粒度的定位信息数据库,提高了定位精度。
指紋庫定位算法的關鍵在于根據不同參攷節點的接受信號彊度指示 RSSI(Receive signal strength indication)建立有效指紋信息數據庫。傳統的方法是在定位區域內標定多箇信息採樣點,而大量樣本數據的採集會導緻算法離線訓練階段工作量增大。Zigbee 傳感器網絡平檯下,綜閤攷慮瞭目標自身對信號的榦擾以及節點數對函數逼近能力的影響,利用信號彊度的非線性特性,提齣瞭一種基于多項式分區插值的虛擬指紋庫生成方法;同時使用粒子濾波對預估計的結果進行處理,以解決 RSSI 不規則分佈問題。實驗結果錶明該方式可以快速、簡捷地生成細粒度的定位信息數據庫,提高瞭定位精度。
지문고정위산법적관건재우근거불동삼고절점적접수신호강도지시 RSSI(Receive signal strength indication)건립유효지문신식수거고。전통적방법시재정위구역내표정다개신식채양점,이대량양본수거적채집회도치산법리선훈련계단공작량증대。Zigbee 전감기망락평태하,종합고필료목표자신대신호적간우이급절점수대함수핍근능력적영향,이용신호강도적비선성특성,제출료일충기우다항식분구삽치적허의지문고생성방법;동시사용입자려파대예고계적결과진행처리,이해결 RSSI 불규칙분포문제。실험결과표명해방식가이쾌속、간첩지생성세립도적정위신식수거고,제고료정위정도。
The key of fingerprint database positioning algorithm is to establish effective fingerprint information database according to RSSI of different reference nodes.Traditional method is to calibrate multiple information sampling points within the positioning area,but the collec-tion of a large number of sample data will lead to the algorithm increasing its workload at off-line training stage.On Zigbee sensor networks platform,considering comprehensively the interference of the target itself on signals and the influence of node number on the function approxi-mation ability,and making use of the nonlinear feature of signal intensity,we propose a polynomial partition interpolation-based virtual finger-print database generation method;meanwhile we employ particle filter to process the pre-estimated results to solve the problem of irregular RS-SI distribution.Experimental result shows that this method can quickly generate in simple way the fine-grained localisation information data-base,and improves the positioning accuracy as well.