北京工业大学学报
北京工業大學學報
북경공업대학학보
JOURNAL OF BEIJING POLYTECHNIC UNIVERSITY
2015年
7期
973-979
,共7页
多相流%海底%水合物%水力旋流器%正交试验
多相流%海底%水閤物%水力鏇流器%正交試驗
다상류%해저%수합물%수력선류기%정교시험
multiphase flow%seabed%gas hydrate%hydrocyclone%orthogonal test
根据海底天然气水合物基本特征和多相流理论,完成了水力旋流器结构参数初步设计,并对原汉考克综合效率计算公式中各参数的含义进行了修正,得到了符合海底水合物混合浆体的改进汉考克综合效率计算公式.然后,建立了水力旋流器的有限元模型,基于雷诺应力模型开发了一种适合液-固-固三相流的流场模拟分析方法,通过数值模拟分析,得到了水力旋流器内部的速度、压力和密度等参数的分布规律.最后,通过结构参数的正交试验优化,得到了水力旋流器的最优结构参数组合,使其分离效率提升到初始方案分离效率的1.36倍.进一步对操作参数进行了正交试验优化,得到了水力旋流器的最优操作参数组合,使水力旋流器的分离效率又提高了5.15%.
根據海底天然氣水閤物基本特徵和多相流理論,完成瞭水力鏇流器結構參數初步設計,併對原漢攷剋綜閤效率計算公式中各參數的含義進行瞭脩正,得到瞭符閤海底水閤物混閤漿體的改進漢攷剋綜閤效率計算公式.然後,建立瞭水力鏇流器的有限元模型,基于雷諾應力模型開髮瞭一種適閤液-固-固三相流的流場模擬分析方法,通過數值模擬分析,得到瞭水力鏇流器內部的速度、壓力和密度等參數的分佈規律.最後,通過結構參數的正交試驗優化,得到瞭水力鏇流器的最優結構參數組閤,使其分離效率提升到初始方案分離效率的1.36倍.進一步對操作參數進行瞭正交試驗優化,得到瞭水力鏇流器的最優操作參數組閤,使水力鏇流器的分離效率又提高瞭5.15%.
근거해저천연기수합물기본특정화다상류이론,완성료수력선류기결구삼수초보설계,병대원한고극종합효솔계산공식중각삼수적함의진행료수정,득도료부합해저수합물혼합장체적개진한고극종합효솔계산공식.연후,건립료수력선류기적유한원모형,기우뢰낙응력모형개발료일충괄합액-고-고삼상류적류장모의분석방법,통과수치모의분석,득도료수력선류기내부적속도、압력화밀도등삼수적분포규률.최후,통과결구삼수적정교시험우화,득도료수력선류기적최우결구삼수조합,사기분리효솔제승도초시방안분리효솔적1.36배.진일보대조작삼수진행료정교시험우화,득도료수력선류기적최우조작삼수조합,사수력선류기적분리효솔우제고료5.15%.
According to the basic features of seabed gas hydrate and the multiphase flow theory, by comparing separation schemes, this paper accomplished the preliminary design of the structural parameters for the hydrocyclone. As the original Hancock overall efficiency formula could not be directly used in the calculation of the separation efficiency of seabed gas hydrate mixed slurry, the definition of parameters of the original formula was modified to work out an improved formula. Then, the finite element model for the hydrocyclone was established and developed, based on the Reynolds stress model, a flow field simulation analysis method applicable for the liquid-solid-solid tri-phase flow, and by simulation analysis of the numerical value, distribution rules of parameters of the hydrocyclone such as the internal speed, pressure and density are obtained. Finally, the optimal structural parameter combination for the hydrocyclone was worked out by optimizing the structural parameters through orthogonal test, thus increasing the separation efficiency by 36. 24%, compared with the initial scheme. Then, the operational parameters were further optimized through orthogonal test to gain an optimal operational parameter combination for the hydrocyclone, increasing separation efficiency of the hydrocyclone by another 5. 15%.