国外电子测量技术
國外電子測量技術
국외전자측량기술
FOREIGN ELECTRONIC MEASUREMENT TECHNOLOGY
2015年
6期
25-28,36
,共5页
朱雪莹%胡文龙%张浩龙%江冕
硃雪瑩%鬍文龍%張浩龍%江冕
주설형%호문룡%장호룡%강면
GEOSAR电离层%积分电子总含量%二次相位误差%峰值旁瓣比
GEOSAR電離層%積分電子總含量%二次相位誤差%峰值徬瓣比
GEOSAR전리층%적분전자총함량%이차상위오차%봉치방판비
geosynchronous synthetic aperture radar ionosphere%total electron content%quadratic phase error%peak side-lobe ratio
针对地球同步轨道合成孔径雷达(geosynchronous synthetic aperture radar ,GEOSAR)电离层扰动相位定标试验研究,提出了一种基于脉冲压缩指标峰值旁瓣比来估计电离层积分电子总含量(total electron content ,TEC)的方法。首先,分析了电离层对GEOSAR相位定标信号相位误差的影响特点;然后,计算了脉冲压缩指标峰值旁瓣比(peak sidelobe ratio ,PSLR)后迭代法估计电离层引起的二次相位误差,进而反演电离层的T EC ;最后,通过仿真分析该方法的可行性和适用性。该方法适用于GEOSAR相位定标试验中估计电离层TEC ,在低波段(如P波段)信号中效果最优。
針對地毬同步軌道閤成孔徑雷達(geosynchronous synthetic aperture radar ,GEOSAR)電離層擾動相位定標試驗研究,提齣瞭一種基于脈遲壓縮指標峰值徬瓣比來估計電離層積分電子總含量(total electron content ,TEC)的方法。首先,分析瞭電離層對GEOSAR相位定標信號相位誤差的影響特點;然後,計算瞭脈遲壓縮指標峰值徬瓣比(peak sidelobe ratio ,PSLR)後迭代法估計電離層引起的二次相位誤差,進而反縯電離層的T EC ;最後,通過倣真分析該方法的可行性和適用性。該方法適用于GEOSAR相位定標試驗中估計電離層TEC ,在低波段(如P波段)信號中效果最優。
침대지구동보궤도합성공경뢰체(geosynchronous synthetic aperture radar ,GEOSAR)전리층우동상위정표시험연구,제출료일충기우맥충압축지표봉치방판비래고계전리층적분전자총함량(total electron content ,TEC)적방법。수선,분석료전리층대GEOSAR상위정표신호상위오차적영향특점;연후,계산료맥충압축지표봉치방판비(peak sidelobe ratio ,PSLR)후질대법고계전리층인기적이차상위오차,진이반연전리층적T EC ;최후,통과방진분석해방법적가행성화괄용성。해방법괄용우GEOSAR상위정표시험중고계전리층TEC ,재저파단(여P파단)신호중효과최우。
Aiming at geosynchronous synthetic aperture radar (GEOSAR) ,there is an experimental study on phase cali‐bration caused by ionospheric disturbances ,this paper proposes a method of measuring ionospheric total electron content (TEC) based on peak sidelobe ratio .Firstly ,analyze the ionospheric affect on GEOSAR experimental signal ,after signal range compression ,calculate the peak sidelobe ratio .Then ,estimate quadratic phase error caused by the ionosphere and inverse the ionosphere TEC .Finally ,the simulation analysis prove the feasibility and applicability of this method .The conclusion is that this method is suitable for the GEOSAR experimental study on phase calibration caused by ionospheric disturbances ,and the estimated TEC in the low band (such as P‐band) is closer to true value .