湖南理工学院学报(自然科学版)
湖南理工學院學報(自然科學版)
호남리공학원학보(자연과학판)
JOURNAL OF HUNAN INSTITUTE OF SCIENCE AND TECHNOLOGY(NATURAL SCIENCE)
2015年
2期
5-9
,共5页
正交约束优化%投影梯度算法%邻近点算法%施密特标准正交化
正交約束優化%投影梯度算法%鄰近點算法%施密特標準正交化
정교약속우화%투영제도산법%린근점산법%시밀특표준정교화
orthogonal constrained optimization%projection gradient method%proximal point algorithm%gram-schmidt process
摘正交约束优化问题在特征值问题、稀疏主成分分析等方面有广泛的应用。由于正交约束的非凸性,精确求解该类问题具有一定的困难。本文提出了一种求解正交约束优化问题的投影梯度算法。该算法采用施密特标准正交化方法处理正交约束,其时间复杂度为 O ( r2 n),比传统 SVD 分解复杂度低,且实现简单。数值实验验证了算法的有效性。
摘正交約束優化問題在特徵值問題、稀疏主成分分析等方麵有廣汎的應用。由于正交約束的非凸性,精確求解該類問題具有一定的睏難。本文提齣瞭一種求解正交約束優化問題的投影梯度算法。該算法採用施密特標準正交化方法處理正交約束,其時間複雜度為 O ( r2 n),比傳統 SVD 分解複雜度低,且實現簡單。數值實驗驗證瞭算法的有效性。
적정교약속우화문제재특정치문제、희소주성분분석등방면유엄범적응용。유우정교약속적비철성,정학구해해류문제구유일정적곤난。본문제출료일충구해정교약속우화문제적투영제도산법。해산법채용시밀특표준정교화방법처리정교약속,기시간복잡도위 O ( r2 n),비전통 SVD 분해복잡도저,차실현간단。수치실험험증료산법적유효성。
The orthogonality constrained problems has wide applications in eigenvalue problems, sparse principal component analysis, etc. However, it is challenging to solve orthogonality constrained problems due to the non-convexity of the equality constraint. This paper proposes a projection gradient method using Gram-Schmidt process to deal with the orthogonality constraint. The time complexity is bounded by O ( r2 n), which is lower than the classical SVD. Some primary numerical results verified the validity of the proposed method.