系统工程与电子技术
繫統工程與電子技術
계통공정여전자기술
SYSTEMS ENGINEERING AND ELECTRONICS
2015年
7期
1543-1550
,共8页
张杰勇%蓝羽石%易侃%毛少杰%王珩
張傑勇%藍羽石%易侃%毛少傑%王珩
장걸용%람우석%역간%모소걸%왕형
C4 ISR 系统%指挥控制关系%适应性演化%n-Best 策略%层次聚类方法%遗传算法
C4 ISR 繫統%指揮控製關繫%適應性縯化%n-Best 策略%層次聚類方法%遺傳算法
C4 ISR 계통%지휘공제관계%괄응성연화%n-Best 책략%층차취류방법%유전산법
C4 ISR system%command and control relationship%adaptive evolution%n-Best strategy%hierar-chical clustering algorithm%genetic algorithms (GA)
研究了C4 ISR系统结构中指挥控制关系的适应性演化问题。构建了C4 ISR系统结构中的指挥控制关系模型,在对指挥控制关系适应性演化过程分析和描述的基础上,设计了演化过程中的指挥控制关系的结构变化代价和性能代价,并以最小化总的演化代价为目标函数构建了指挥控制关系适应性演化问题的数学模型。提出了基于 n-Best 策略层级聚类方法和遗传算法(genetic algorithm,GA)的问题模型求解思路。n-Best 策略层级聚类方法用来获取每个任务阶段可行的指挥控制关系集合,而 GA 用来搜索最优的演化路径。最后通过某一仿真算例验证了求解方法的可行性、稳定性。
研究瞭C4 ISR繫統結構中指揮控製關繫的適應性縯化問題。構建瞭C4 ISR繫統結構中的指揮控製關繫模型,在對指揮控製關繫適應性縯化過程分析和描述的基礎上,設計瞭縯化過程中的指揮控製關繫的結構變化代價和性能代價,併以最小化總的縯化代價為目標函數構建瞭指揮控製關繫適應性縯化問題的數學模型。提齣瞭基于 n-Best 策略層級聚類方法和遺傳算法(genetic algorithm,GA)的問題模型求解思路。n-Best 策略層級聚類方法用來穫取每箇任務階段可行的指揮控製關繫集閤,而 GA 用來搜索最優的縯化路徑。最後通過某一倣真算例驗證瞭求解方法的可行性、穩定性。
연구료C4 ISR계통결구중지휘공제관계적괄응성연화문제。구건료C4 ISR계통결구중적지휘공제관계모형,재대지휘공제관계괄응성연화과정분석화묘술적기출상,설계료연화과정중적지휘공제관계적결구변화대개화성능대개,병이최소화총적연화대개위목표함수구건료지휘공제관계괄응성연화문제적수학모형。제출료기우 n-Best 책략층급취류방법화유전산법(genetic algorithm,GA)적문제모형구해사로。n-Best 책략층급취류방법용래획취매개임무계단가행적지휘공제관계집합,이 GA 용래수색최우적연화로경。최후통과모일방진산례험증료구해방법적가행성、은정성。
The adaptive evolution of command and control (C2 )relationship in C4 ISR system structure is studied.The model of the C2 relationship is established,the process of the C2 relationship adaptive evolution is analyzed and depicted,the cost of structure change and the cost of performance are designed,and the mathemat-ic model with the value of sum of evolution cost minimization as the objective function is built for the problem of the C2 relationship adaptive evolution.Then the method based on the n-Best strategy hierarchical clustering al-gorithm and genetic algorithm (GA)to solve this model is designed.The hierarchical clustering algorithm based on n-Best strategy is used for getting the feasible C2 relationship in each task window,and the GA is used for searching the best path of evolution.Finally,the applicability and stability of this solving algorithm are illustra-ted by a case of joint operational plan.