新疆医科大学学报
新疆醫科大學學報
신강의과대학학보
JOURNAL OF XINJIANG MEDICAL UNIVERSITY
2015年
7期
810-814
,共5页
木拉提·哈米提%伊力扎提·阿力甫%严传波%阿布都艾尼·库吐鲁克%孙静%艾赛提·买提木沙%杨芳%员伟康%孔喜梅%张岁霞
木拉提·哈米提%伊力扎提·阿力甫%嚴傳波%阿佈都艾尼·庫吐魯剋%孫靜%艾賽提·買提木沙%楊芳%員偉康%孔喜梅%張歲霞
목랍제·합미제%이력찰제·아력보%엄전파%아포도애니·고토로극%손정%애새제·매제목사%양방%원위강%공희매%장세하
新疆维吾尔草药%阈值分割法%硬 C 均值聚类算法%模糊 C 均值聚类算法%分割草药图像
新疆維吾爾草藥%閾值分割法%硬 C 均值聚類算法%模糊 C 均值聚類算法%分割草藥圖像
신강유오이초약%역치분할법%경 C 균치취류산법%모호 C 균치취류산법%분할초약도상
Xinjiang Uygur herbal medicine%threshold segmentation method%hard C mean clustering method%fuzzy Cmean method%segment herbal image
目的:为提高新疆维吾尔医草药图像的分类和检索准确率,对新疆维吾尔医草药图像进行感兴趣区域分割研究。方法分别采用阈值法、硬 C 均值(HCM)聚类算法和模糊 C 均值(FCM)聚类算法分割图像,将分割后的图像与原始图像进行迭代,分割15幅新疆维吾尔医药材图像,并将分割结果与手工分割结果进行比较,以评价分割算法的优劣。结果利用阈值法分割后的图像与手工分割图像进行比较,15幅图像的面积大小差异的平均值为12.7%,表面平均距离的平均值为2.79灰度值;利用 HCM 聚类算法分割后图像的面积大小差异的平均值为12.2%,表面平均距离的平均值为2.7灰度值;利用 FCM 聚类法分割后图像面积大小差异的平均值为9.04%,表面平均距离的平均值为0.96灰度值。结论阈值分割算法的分割速率比其他2种算法快,但该方法可能出现过度分割现象而导致信息的流失;硬 C 均值聚类算法能够较好地保留感兴趣区域,但分割时图像背景无法完全舍去而导致无用信息的掺杂;模糊 C 均值聚类算法分割速率相对较慢,但其整体分割准确率却高于以上2种算法,该算法较适于新疆维吾尔医药材图像的分割。本研究对后期图像的特征提取、分类和检索奠定基础。FCM method also could keep the interesting areas and also can wipe away more background area than HCM method.Therefore,FCM segmentation method was proved more appropriate for the Xinjiang Uygur medicine image segmentation,which served as a basic research on Xinjiang Uygur medicine image feature extraction,classification and retrieval.
目的:為提高新疆維吾爾醫草藥圖像的分類和檢索準確率,對新疆維吾爾醫草藥圖像進行感興趣區域分割研究。方法分彆採用閾值法、硬 C 均值(HCM)聚類算法和模糊 C 均值(FCM)聚類算法分割圖像,將分割後的圖像與原始圖像進行迭代,分割15幅新疆維吾爾醫藥材圖像,併將分割結果與手工分割結果進行比較,以評價分割算法的優劣。結果利用閾值法分割後的圖像與手工分割圖像進行比較,15幅圖像的麵積大小差異的平均值為12.7%,錶麵平均距離的平均值為2.79灰度值;利用 HCM 聚類算法分割後圖像的麵積大小差異的平均值為12.2%,錶麵平均距離的平均值為2.7灰度值;利用 FCM 聚類法分割後圖像麵積大小差異的平均值為9.04%,錶麵平均距離的平均值為0.96灰度值。結論閾值分割算法的分割速率比其他2種算法快,但該方法可能齣現過度分割現象而導緻信息的流失;硬 C 均值聚類算法能夠較好地保留感興趣區域,但分割時圖像揹景無法完全捨去而導緻無用信息的摻雜;模糊 C 均值聚類算法分割速率相對較慢,但其整體分割準確率卻高于以上2種算法,該算法較適于新疆維吾爾醫藥材圖像的分割。本研究對後期圖像的特徵提取、分類和檢索奠定基礎。FCM method also could keep the interesting areas and also can wipe away more background area than HCM method.Therefore,FCM segmentation method was proved more appropriate for the Xinjiang Uygur medicine image segmentation,which served as a basic research on Xinjiang Uygur medicine image feature extraction,classification and retrieval.
목적:위제고신강유오이의초약도상적분류화검색준학솔,대신강유오이의초약도상진행감흥취구역분할연구。방법분별채용역치법、경 C 균치(HCM)취류산법화모호 C 균치(FCM)취류산법분할도상,장분할후적도상여원시도상진행질대,분할15폭신강유오이의약재도상,병장분할결과여수공분할결과진행비교,이평개분할산법적우렬。결과이용역치법분할후적도상여수공분할도상진행비교,15폭도상적면적대소차이적평균치위12.7%,표면평균거리적평균치위2.79회도치;이용 HCM 취류산법분할후도상적면적대소차이적평균치위12.2%,표면평균거리적평균치위2.7회도치;이용 FCM 취류법분할후도상면적대소차이적평균치위9.04%,표면평균거리적평균치위0.96회도치。결론역치분할산법적분할속솔비기타2충산법쾌,단해방법가능출현과도분할현상이도치신식적류실;경 C 균치취류산법능구교호지보류감흥취구역,단분할시도상배경무법완전사거이도치무용신식적참잡;모호 C 균치취류산법분할속솔상대교만,단기정체분할준학솔각고우이상2충산법,해산법교괄우신강유오이의약재도상적분할。본연구대후기도상적특정제취、분류화검색전정기출。FCM method also could keep the interesting areas and also can wipe away more background area than HCM method.Therefore,FCM segmentation method was proved more appropriate for the Xinjiang Uygur medicine image segmentation,which served as a basic research on Xinjiang Uygur medicine image feature extraction,classification and retrieval.
Objective To improve the accuracy of classification and retrieval of Xinjiang Uygur herbal medi-cine images by segmenting the interesting area from the image of the herbal medicine.Methods 15 Xin-jiang Uygur herbal medicine images were segmented by means of threshold method,hard C mean method and fuzzy C mean method.The whole medicine image was segmented by clustering similar pixels from dif-ferent pixel level by getting rid of useless group.The segmented image was iterated with the original im-age.The area size difference and the average surface distance were compared and evaluated.Results The average surface distance and the mean area size difference are 12.7% and 2.79 with threshold method, 12.2% and 2.7 with hard C mean method and 9.04% and 0.96 with fuzzy C mean method respectively.Con-clusion By three segmentation methods with 15 images,it's concluded that the threshold segmentation al-gorithm was proved simple and fast,but with some interesting areas missing and information missing.The HCM segmentation method could keep almost all the interesting areas but with some useless features.The FCM method also could keep the interesting areas and also can wipe away more background area thanHCM method.Therefore,FCM segmentation method was proved more appropriate for the Xinjiang Uygurmedicine image segmentation,which served as a basic research on Xinjiang Uygur medicine image featureextraction,classification and retrieval.