粉末冶金材料科学与工程
粉末冶金材料科學與工程
분말야금재료과학여공정
POWDER METALLURGY MATERIALS SCIENCE AND ENGINEERING
2015年
3期
425-430
,共6页
陆磊%樊希安%胡晓明%张坚义
陸磊%樊希安%鬍曉明%張堅義
륙뢰%번희안%호효명%장견의
红外辐射%微波加热%铁氧体%堇青石%辐射率
紅外輻射%微波加熱%鐵氧體%堇青石%輻射率
홍외복사%미파가열%철양체%근청석%복사솔
infrared radiation%microwave heating%ferrite%cordierite%emissivity
以堇青石(Mg2Al4Si5O18)、Fe2O3、MnO2、CuO和Co2O3为原料,通过微波加热合成堇青石?铁氧体基红外复合陶瓷材料,利用X射线衍射、红外光谱仪、热重?差热分析等手段分析该复合陶瓷的物相组成与结构、辐射率及热稳定性,研究名义成分对复合陶瓷材料结构与性能的影响。结果表明:该复合陶瓷中的铁氧体为混合型尖晶石结构。铁氧体含量(质量分数,下同)为10%时,随原料粉末中 Fe2O3含量增加或 MnO2含量减少(即 Fe2O3与 MnO2的质量比增大),Mn3+尖晶石相含量减少,但 Fe2O3与 MnO2的质量比对复合陶瓷辐射率的影响较小;w(Fe2O3):w(MnO2)的值为3:1时,随铁氧体含量增加,堇青石的衍射峰向小角度方向偏移,堇青石的晶面间距增大,陶瓷材料的辐射率相应增加;当铁氧体含量为30%时,300℃下复合陶瓷在8~14μm 波段的红外辐射率达0.80~0.89。此外,微波加热合成的堇青石?铁氧体基红外陶瓷热稳定性较好,可在1300℃高温环境下使用。
以堇青石(Mg2Al4Si5O18)、Fe2O3、MnO2、CuO和Co2O3為原料,通過微波加熱閤成堇青石?鐵氧體基紅外複閤陶瓷材料,利用X射線衍射、紅外光譜儀、熱重?差熱分析等手段分析該複閤陶瓷的物相組成與結構、輻射率及熱穩定性,研究名義成分對複閤陶瓷材料結構與性能的影響。結果錶明:該複閤陶瓷中的鐵氧體為混閤型尖晶石結構。鐵氧體含量(質量分數,下同)為10%時,隨原料粉末中 Fe2O3含量增加或 MnO2含量減少(即 Fe2O3與 MnO2的質量比增大),Mn3+尖晶石相含量減少,但 Fe2O3與 MnO2的質量比對複閤陶瓷輻射率的影響較小;w(Fe2O3):w(MnO2)的值為3:1時,隨鐵氧體含量增加,堇青石的衍射峰嚮小角度方嚮偏移,堇青石的晶麵間距增大,陶瓷材料的輻射率相應增加;噹鐵氧體含量為30%時,300℃下複閤陶瓷在8~14μm 波段的紅外輻射率達0.80~0.89。此外,微波加熱閤成的堇青石?鐵氧體基紅外陶瓷熱穩定性較好,可在1300℃高溫環境下使用。
이근청석(Mg2Al4Si5O18)、Fe2O3、MnO2、CuO화Co2O3위원료,통과미파가열합성근청석?철양체기홍외복합도자재료,이용X사선연사、홍외광보의、열중?차열분석등수단분석해복합도자적물상조성여결구、복사솔급열은정성,연구명의성분대복합도자재료결구여성능적영향。결과표명:해복합도자중적철양체위혼합형첨정석결구。철양체함량(질량분수,하동)위10%시,수원료분말중 Fe2O3함량증가혹 MnO2함량감소(즉 Fe2O3여 MnO2적질량비증대),Mn3+첨정석상함량감소,단 Fe2O3여 MnO2적질량비대복합도자복사솔적영향교소;w(Fe2O3):w(MnO2)적치위3:1시,수철양체함량증가,근청석적연사봉향소각도방향편이,근청석적정면간거증대,도자재료적복사솔상응증가;당철양체함량위30%시,300℃하복합도자재8~14μm 파단적홍외복사솔체0.80~0.89。차외,미파가열합성적근청석?철양체기홍외도자열은정성교호,가재1300℃고온배경하사용。
Cordierite-ferrites based infrared radiation composite ceramics were prepared by microwave heating using Fe2O3, MnO2, CuO, Co2O3, and Mg2Al4Si5O18 powders as raw materials. The effect of chemical components on microstructure and properties of composite ceramics was investigated. The phase composition, structure, thermal dynamic properties, and emissivity of the prepared composite materials were investigated by X-ray diffraction, thermal gravimetric and differential thermal analysis, and infrared spectroscopy, respectively. The results show that the synthesized ferrite has mixed spinel structure, for ceramics with mass fraction of 10% ferrites, the spinel phases containing Mn3+ in the synthesized ferrites decrease with the increasing of Fe2O3 and the decreasing of MnO2, but the quality ratio of Fe2O3 to MnO2 has a little influence on the infrared radiation performance. When the quality ratio of Fe2O3 to MnO2 is 3:1, with increasing ferrites, the diffraction peaks of cordierite exhibit a shift towards small angle and the interplanar distance of cordierite increases, and accordingly the emissivity of the composite ceramic increases, especially the emissivity of the ceramic containing 30% ferrites is 0.85~0.89 in 8~14μm band at 300 ℃. Moreover, the synthesized cordierite-ferrite based infrared radiation ceramic shows an excellent thermal stability, which is capable of working long term at 1 300 ℃.