天津工业大学学报
天津工業大學學報
천진공업대학학보
JOURNAL OF TIANJIN POLYTECHNIC UNIVERSITY
2015年
3期
67-72
,共6页
林志贵%姚芳琴%冯林强%杜军兰%李建雄
林誌貴%姚芳琴%馮林彊%杜軍蘭%李建雄
림지귀%요방금%풍림강%두군란%리건웅
亚硝酸盐%预测%自适应遗传算法%弹性BP神经网络
亞硝痠鹽%預測%自適應遺傳算法%彈性BP神經網絡
아초산염%예측%자괄응유전산법%탄성BP신경망락
nitrite%prediction%adaptive genetic algorithm(AGA)%elastic BP neural network
针对目前营养盐检测主要是通过化学方法实现,无法获得在线检测的问题,利用营养盐与其影响因子之间的关系,提出结合自适应遗传算法与弹性BP神经网络的预测模型。利用改进的自适应遗传算法,通过交叉、变异获取弹性BP神经网络的初始权值与阈值,加速预测过程。该模型通过营养盐影响因子数据,预测亚硝酸盐浓度。仿真结果表明:基于弹性BP神经网络的预测模型预测营养盐浓度是可行的,其预测得到的亚硝酸盐浓度值的相对误差主要集中于0~30%;结合自适应遗传算法与弹性BP神经网络的预测模型的预测效果好于基于弹性BP神经网络的预测模型。
針對目前營養鹽檢測主要是通過化學方法實現,無法穫得在線檢測的問題,利用營養鹽與其影響因子之間的關繫,提齣結閤自適應遺傳算法與彈性BP神經網絡的預測模型。利用改進的自適應遺傳算法,通過交扠、變異穫取彈性BP神經網絡的初始權值與閾值,加速預測過程。該模型通過營養鹽影響因子數據,預測亞硝痠鹽濃度。倣真結果錶明:基于彈性BP神經網絡的預測模型預測營養鹽濃度是可行的,其預測得到的亞硝痠鹽濃度值的相對誤差主要集中于0~30%;結閤自適應遺傳算法與彈性BP神經網絡的預測模型的預測效果好于基于彈性BP神經網絡的預測模型。
침대목전영양염검측주요시통과화학방법실현,무법획득재선검측적문제,이용영양염여기영향인자지간적관계,제출결합자괄응유전산법여탄성BP신경망락적예측모형。이용개진적자괄응유전산법,통과교차、변이획취탄성BP신경망락적초시권치여역치,가속예측과정。해모형통과영양염영향인자수거,예측아초산염농도。방진결과표명:기우탄성BP신경망락적예측모형예측영양염농도시가행적,기예측득도적아초산염농도치적상대오차주요집중우0~30%;결합자괄응유전산법여탄성BP신경망락적예측모형적예측효과호우기우탄성BP신경망락적예측모형。
Currently nutrients are detected by the chemical method. A chemical method cannot get online detection. To solve the problem, based on the relationship between nutrients and their impact factors, a prediction model which combined Adaptive Genetic Algorithm and Elastic BP Neural Network is put forward in this paper. Using the improved Adaptive Genetic Algorithm, the initial weights and thresholds of Elastic BP Neural Network are obtained by the crossover and mutation to accelerate the prediction process. The imporoved model predicts the nitrite by using the data of its impact factors. Simulation results show that it is feasible to predict the nutrient concentration by using the prediction model based on the Elastic BP Neural Network. The relative error of nitrite concentration value mainly focuses on 0-30%. The prediction model based on Adaptive Genetic Algorithm and Elastic BP neural network is better than that based on Elastic BP Neural Network.