西华大学学报(自然科学版)
西華大學學報(自然科學版)
서화대학학보(자연과학판)
JOURNAL OF XIHUA UNIVERSITY(NATURAL SCIENCE EDITION)
2015年
4期
52-58
,共7页
拓扑空间%完美覆盖%Urysohn引理%函数分离%Tietze扩张定理
拓撲空間%完美覆蓋%Urysohn引理%函數分離%Tietze擴張定理
탁복공간%완미복개%Urysohn인리%함수분리%Tietze확장정리
topological space%perfect-Cover%Urysohn lemma%function separated%Tietze expansion theorem
建立在一般拓扑空间中存在连续函数使得它的支撑在某个开集内、在开集的某个闭子集上恒为常数的充要条件。同时,在一般拓扑空间中的完美覆盖上建立Urysohn引理,将该定理推广到更加一般的形式,建立子集函数分离的充要条件。文章利用保序定理证明更一般的Urysohn引理,得到集族是完美覆盖的充要条件。同时阐述各种形式的Urysohn引理的联系,得到完美覆盖的重要性质。最后给出 Urysohn 引理的应用,证明推广的Tietze扩张定理。
建立在一般拓撲空間中存在連續函數使得它的支撐在某箇開集內、在開集的某箇閉子集上恆為常數的充要條件。同時,在一般拓撲空間中的完美覆蓋上建立Urysohn引理,將該定理推廣到更加一般的形式,建立子集函數分離的充要條件。文章利用保序定理證明更一般的Urysohn引理,得到集族是完美覆蓋的充要條件。同時闡述各種形式的Urysohn引理的聯繫,得到完美覆蓋的重要性質。最後給齣 Urysohn 引理的應用,證明推廣的Tietze擴張定理。
건립재일반탁복공간중존재련속함수사득타적지탱재모개개집내、재개집적모개폐자집상항위상수적충요조건。동시,재일반탁복공간중적완미복개상건립Urysohn인리,장해정리추엄도경가일반적형식,건립자집함수분리적충요조건。문장이용보서정리증명경일반적Urysohn인리,득도집족시완미복개적충요조건。동시천술각충형식적Urysohn인리적련계,득도완미복개적중요성질。최후급출 Urysohn 인리적응용,증명추엄적Tietze확장정리。
We present the sufficient and necessary conditions that there is continuous functions which supports is contained in cer-tain open set and the value is constant in some closed subset of the open set. At the same time, we establish Urysohn lemma in the per-fect Cover of general topological space and obtain a more general form of this theorem and construct the sufficient and necessary condi-tions which the sets are function separared. order preserving theory is utilized to prove a more general Uryshon Lemma and we obtain the sufficient and necessary conditions which a set family is a perfect cover. Then we survey the connection between the various Ury-sohn’s lemmas and obtain an important property of perfect cover. Finally, we give the application of Urysohn lemma and prove the gen-eralized Tietze expansion theorem.