计算机工程与应用
計算機工程與應用
계산궤공정여응용
COMPUTER ENGINEERING AND APPLICATIONS
2015年
12期
219-222,245
,共5页
拉凡格氏算法%果蝇优化算法%粒子群优化算法%稀疏分解
拉凡格氏算法%果蠅優化算法%粒子群優化算法%稀疏分解
랍범격씨산법%과승우화산법%입자군우화산법%희소분해
Levenberg Marquardt(LM)algorithm%Fruit Fly Optimization Algorithm(FOA)%Particle Swarm Optimiza-tion algorithm(PSO)%sparse decomposition
信号的稀疏表示在信号处理的许多方面有着重要的应用,但稀疏分解计算量十分巨大,难以产业化应用。粒子群优化(PSO)及果蝇优化(FOA)等智能算法具备前期收敛速度快,全局搜索能力强的优点,应用到语音信号的稀疏分解中,虽然大大提高了语音信号稀疏分解的速度,但是该类算法后期的收敛速度较低,稀疏分解速度仍然偏低。拉凡格氏(LM)算法具有收敛速度快,精度高的特点,但是LM算法依赖初值,这使它的应用受到了限制。结合智能算法FOA及LM算法的优点,采用FOA算法求出Gabor原子参数初值,利用这些初值进行LM迭代搜索最优原子。仿真结果表明,基于FOA优化算法和LM算法相结合的方法,具有收敛速度快,精度高的特点,有较高的实用价值。
信號的稀疏錶示在信號處理的許多方麵有著重要的應用,但稀疏分解計算量十分巨大,難以產業化應用。粒子群優化(PSO)及果蠅優化(FOA)等智能算法具備前期收斂速度快,全跼搜索能力彊的優點,應用到語音信號的稀疏分解中,雖然大大提高瞭語音信號稀疏分解的速度,但是該類算法後期的收斂速度較低,稀疏分解速度仍然偏低。拉凡格氏(LM)算法具有收斂速度快,精度高的特點,但是LM算法依賴初值,這使它的應用受到瞭限製。結閤智能算法FOA及LM算法的優點,採用FOA算法求齣Gabor原子參數初值,利用這些初值進行LM迭代搜索最優原子。倣真結果錶明,基于FOA優化算法和LM算法相結閤的方法,具有收斂速度快,精度高的特點,有較高的實用價值。
신호적희소표시재신호처리적허다방면유착중요적응용,단희소분해계산량십분거대,난이산업화응용。입자군우화(PSO)급과승우화(FOA)등지능산법구비전기수렴속도쾌,전국수색능력강적우점,응용도어음신호적희소분해중,수연대대제고료어음신호희소분해적속도,단시해류산법후기적수렴속도교저,희소분해속도잉연편저。랍범격씨(LM)산법구유수렴속도쾌,정도고적특점,단시LM산법의뢰초치,저사타적응용수도료한제。결합지능산법FOA급LM산법적우점,채용FOA산법구출Gabor원자삼수초치,이용저사초치진행LM질대수색최우원자。방진결과표명,기우FOA우화산법화LM산법상결합적방법,구유수렴속도쾌,정도고적특점,유교고적실용개치。
Signal sparse representation has important applications in many aspects of signal processing, but the problems of having large memory capacity and huge computational complexity in sparse decomposition, restrict its practical usage. Particle Swarm Optimization(PSO)algorithm and Fruit Fly Optimization Algorithm(FOA)being iterations random algo-rithms do better in finding the optimization solution with greater probability, so they can greatly improve the speed of the speech signal sparse decomposition, but they have the weakness of slow convergence in the later and less precision. Levenberg Marquardt(LM)algorithm has the advantage of the fast convergence speed and high precision, but LM algorithm depends on the initial value, which restricts its practical usage. Combining the advantages of FOA algorithms and LM algorithms, the initial parameters of Gabor atom are solved by FOA algorithm, and then the LM is used to optimize the initial parameters. The simulation results show that the solution of the optimization can be easily and quickly obtained by FOA-LM.