计算机工程与应用
計算機工程與應用
계산궤공정여응용
COMPUTER ENGINEERING AND APPLICATIONS
2015年
12期
111-117,188
,共8页
修宇%王骏%王忠群%皇苏斌
脩宇%王駿%王忠群%皇囌斌
수우%왕준%왕충군%황소빈
图半监督学习%贪心最大割%早期停止策略%目标函数值
圖半鑑督學習%貪心最大割%早期停止策略%目標函數值
도반감독학습%탐심최대할%조기정지책략%목표함수치
graph semi-supervised learning%greedy max-cut%early stopping strategy%object function value
针对贪心最大割图半监督学习算法(简称GGMC)计算复杂度较高的问题,提出一种改进的贪心最大割图半监督学习算法(简称GGMC-Estop)。依据对GGMC算法优化过程中目标函数变化趋势的实验分析,采取两种在迭代初期停止GGMC算法运行策略,继而通过一次标准的标签传播步骤预测图上所有样本的标记来实施对GGMC的改进。典型数据集的仿真实验结果表明,在取得相近分类性能的同时,改进算法在计算速度上有很大的提高。
針對貪心最大割圖半鑑督學習算法(簡稱GGMC)計算複雜度較高的問題,提齣一種改進的貪心最大割圖半鑑督學習算法(簡稱GGMC-Estop)。依據對GGMC算法優化過程中目標函數變化趨勢的實驗分析,採取兩種在迭代初期停止GGMC算法運行策略,繼而通過一次標準的標籤傳播步驟預測圖上所有樣本的標記來實施對GGMC的改進。典型數據集的倣真實驗結果錶明,在取得相近分類性能的同時,改進算法在計算速度上有很大的提高。
침대탐심최대할도반감독학습산법(간칭GGMC)계산복잡도교고적문제,제출일충개진적탐심최대할도반감독학습산법(간칭GGMC-Estop)。의거대GGMC산법우화과정중목표함수변화추세적실험분석,채취량충재질대초기정지GGMC산법운행책략,계이통과일차표준적표첨전파보취예측도상소유양본적표기래실시대GGMC적개진。전형수거집적방진실험결과표명,재취득상근분류성능적동시,개진산법재계산속도상유흔대적제고。
Aiming at the problem of high computational complexity of Greed Max-Cut Graph semi-supervised learning algorithm(GGMC), an improved Greed Max-Cut Graph semi-supervised learning algorithm based on Early stopping strategy, called GGMC-Estop, is proposed. According to the experimental analysis on that object function value in optimi-zation procedure of GGMC, the algorithm is improved in which two early stopping strategies are applied to stop GGMC training and prediction. Standard propagation is used to predict the label of data over the whole graph in one step. Experi-mental results on typical data sets show that the computational amount using the improved algorithm is far less than that of using GGMC algorithm, while the performance of classification for these two algorithms is almost approximate.