计算机工程与应用
計算機工程與應用
계산궤공정여응용
COMPUTER ENGINEERING AND APPLICATIONS
2015年
12期
83-87
,共5页
AR(p)模型%无线传感网络%模糊隶属度函数%预测精度%数据通信
AR(p)模型%無線傳感網絡%模糊隸屬度函數%預測精度%數據通信
AR(p)모형%무선전감망락%모호대속도함수%예측정도%수거통신
AR(p)model%Wireless Sensor Network(WSN)%fuzzy membership function%prediction accuracy%data com-munication
自回归AR(p)预测模型是无线传感网络(WSN)中一种减少数据传输次数和降低能量消耗的方法。针对AR(p)模型在建模过程中忽略了不同时期的历史数据对预测值的影响存在的差异,导致模型预测精度不高、网络通信频率受影响的问题,提出了一种改进的预测模型FA R(p)。在A R(p)模型中引入一种新的模糊隶属度函数,通过模糊隶属度函数对预测模型的每个历史数据赋予权值,实现历史数据“重近轻远”的预测效果,并经二次加权平均算法处理后重新构建预测模型。仿真结果表明,改进的预测模型有效地提高了模型预测精度,减少了传感网络中数据传输次数,降低了能量消耗。
自迴歸AR(p)預測模型是無線傳感網絡(WSN)中一種減少數據傳輸次數和降低能量消耗的方法。針對AR(p)模型在建模過程中忽略瞭不同時期的歷史數據對預測值的影響存在的差異,導緻模型預測精度不高、網絡通信頻率受影響的問題,提齣瞭一種改進的預測模型FA R(p)。在A R(p)模型中引入一種新的模糊隸屬度函數,通過模糊隸屬度函數對預測模型的每箇歷史數據賦予權值,實現歷史數據“重近輕遠”的預測效果,併經二次加權平均算法處理後重新構建預測模型。倣真結果錶明,改進的預測模型有效地提高瞭模型預測精度,減少瞭傳感網絡中數據傳輸次數,降低瞭能量消耗。
자회귀AR(p)예측모형시무선전감망락(WSN)중일충감소수거전수차수화강저능량소모적방법。침대AR(p)모형재건모과정중홀략료불동시기적역사수거대예측치적영향존재적차이,도치모형예측정도불고、망락통신빈솔수영향적문제,제출료일충개진적예측모형FA R(p)。재A R(p)모형중인입일충신적모호대속도함수,통과모호대속도함수대예측모형적매개역사수거부여권치,실현역사수거“중근경원”적예측효과,병경이차가권평균산법처리후중신구건예측모형。방진결과표명,개진적예측모형유효지제고료모형예측정도,감소료전감망락중수거전수차수,강저료능량소모。
Autoregressive AR(p)model is an effective method to reduce the frequency of data communication and decrease the energy consumption in Wireless Sensor Network(WSN). In view of the problem that AR(p)model ignores the different influence of historical data in different periods on the predictive value in the modeling process and affects the prediction accuracy of prediction model and the frequency of data communication in WSN, an improved AR(p)predic-tion model which is known as FAR(p)is proposed. By specifying a fuzzy membership value for each historical data with a new designed fuzzy membership function introduced in AR(p), it can achieve the forecasting of historical data“farther is more weight”, in addition, with the data sequence processed by two weighted average algorithm a new prediction model is built. Simulation results show that the improved model can effectively improve the prediction accuracy, reduce data communication and decrease energy consumption in WSN.