组合机床与自动化加工技术
組閤機床與自動化加工技術
조합궤상여자동화가공기술
MODULAR MACHINE TOOL & AUTOMATIC MANUFACTURING TECHNIQUE
2015年
6期
78-82
,共5页
任学平%辛向志%庞震%邢义通%王建国
任學平%辛嚮誌%龐震%邢義通%王建國
임학평%신향지%방진%형의통%왕건국
多传感器%网络融合%滚动轴承
多傳感器%網絡融閤%滾動軸承
다전감기%망락융합%곤동축승
multi-sensor%networks fusion%rolling bearing
经验模态分解( Empirical Mode Decomposition ,EMD)方法可使滚动轴承振动信号根据自身尺度自适应的分解为若干个固有模态分量( Intrinsic Mode Function ,IMF),信息熵能反映系统的不确定程度,滚动轴承发生故障会导致信息熵发生变化,结合EMD与信息熵,提出了EMD空间状态特征谱熵和IMF奇异谱熵,将其作为概率神经网络的特征向量,构建多传感器系统的多个概率神经网络的初级诊断网络。由于概率神经网络累加层输出结果为属于每一种模式的概率值,用概率神经网络的累加层输出结果构建D-S证据理论的mass函数,通过D-S证据理论进行决策级融合诊断。将该方法用于滚动轴承故障模式分类,试验结果表明该方法的可行性与有效性。与单一传感器诊断相比,提高了故障诊断精度。
經驗模態分解( Empirical Mode Decomposition ,EMD)方法可使滾動軸承振動信號根據自身呎度自適應的分解為若榦箇固有模態分量( Intrinsic Mode Function ,IMF),信息熵能反映繫統的不確定程度,滾動軸承髮生故障會導緻信息熵髮生變化,結閤EMD與信息熵,提齣瞭EMD空間狀態特徵譜熵和IMF奇異譜熵,將其作為概率神經網絡的特徵嚮量,構建多傳感器繫統的多箇概率神經網絡的初級診斷網絡。由于概率神經網絡纍加層輸齣結果為屬于每一種模式的概率值,用概率神經網絡的纍加層輸齣結果構建D-S證據理論的mass函數,通過D-S證據理論進行決策級融閤診斷。將該方法用于滾動軸承故障模式分類,試驗結果錶明該方法的可行性與有效性。與單一傳感器診斷相比,提高瞭故障診斷精度。
경험모태분해( Empirical Mode Decomposition ,EMD)방법가사곤동축승진동신호근거자신척도자괄응적분해위약간개고유모태분량( Intrinsic Mode Function ,IMF),신식적능반영계통적불학정정도,곤동축승발생고장회도치신식적발생변화,결합EMD여신식적,제출료EMD공간상태특정보적화IMF기이보적,장기작위개솔신경망락적특정향량,구건다전감기계통적다개개솔신경망락적초급진단망락。유우개솔신경망락루가층수출결과위속우매일충모식적개솔치,용개솔신경망락적루가층수출결과구건D-S증거이론적mass함수,통과D-S증거이론진행결책급융합진단。장해방법용우곤동축승고장모식분류,시험결과표명해방법적가행성여유효성。여단일전감기진단상비,제고료고장진단정도。
A rolling bearing vibration signal can be decomposed into a number of intrinsic mode function ( IMF) adaptively according to its own scale with the empirical mode decomposition ( EMD) method. The information entropy can reflect the uncertainty degree of the system. The rolling bearing failure will change the information entropy. EMD space state feature entropy and IMF singular spectrum entropy are proposed by combining EMD and information entropy. In the multi-sensor system, primary diagnosis network of mul-tiple probabilistic neural networks was constructed and the feature vector of probabilistic neural network is EMD space state feature entropy and IMF singular spectrum entropy. Because output of accumulation layer of the probabilistic neural network are each kind of model of probability values, mass functions of D-S evi-dence theory can be built using these probability values. The fusion diagnosis of decision level proceeded by the D-S evidence theory. Using this method for rolling bearing fault pattern classification, the results of ex-periments show the feasibility and effectiveness of the method. Compared with the single sensor method in the diagnosis, it improved the accuracy of fault diagnosis.