过滤与分离
過濾與分離
과려여분리
FILTER & SEPARATOR
2015年
2期
1-5
,共5页
郑威超%谢锐%巨晓洁%汪伟%刘壮%陈刚%褚良银
鄭威超%謝銳%巨曉潔%汪偉%劉壯%陳剛%褚良銀
정위초%사예%거효길%왕위%류장%진강%저량은
微流控%复杂流体%法琳效应%水力升力%非牛顿流体
微流控%複雜流體%法琳效應%水力升力%非牛頓流體
미류공%복잡류체%법림효응%수력승력%비우돈류체
microfluidics%complex fluids%f?hr?us-lindqvist effect%hydrodynamic lift force%non-newtonian fluid
具有圆柱阵列的微通道可利用法琳效应产生的无细胞血浆层(尾迹)来放大血液等复杂流体的流动行为,从而更好地操控流体或简便地预测流体的特性。以血液作为典型的复杂流体,系统考察了静态和动态血细胞浓度与减阻剂等因素对圆柱阵列微通道中尾迹宽度和血细胞分布的影响规律。血液样品流经圆柱阵列后产生尾迹宽度随着血细胞浓度的增大而减小甚至消失。在考察的1.7%-70%血细胞浓度范围内,可根据两者的定量关系由尾迹宽度得出血细胞浓度的大小。微量聚环氧乙烷(PEO)减阻剂的加入使粘弹性作用起主导作用,血细胞向壁面发生迁移,并且出现复杂的分层分布。研究结果有望为微通道中非牛顿流体等复杂流体各组分的分离和操控提供新的思路。
具有圓柱陣列的微通道可利用法琳效應產生的無細胞血漿層(尾跡)來放大血液等複雜流體的流動行為,從而更好地操控流體或簡便地預測流體的特性。以血液作為典型的複雜流體,繫統攷察瞭靜態和動態血細胞濃度與減阻劑等因素對圓柱陣列微通道中尾跡寬度和血細胞分佈的影響規律。血液樣品流經圓柱陣列後產生尾跡寬度隨著血細胞濃度的增大而減小甚至消失。在攷察的1.7%-70%血細胞濃度範圍內,可根據兩者的定量關繫由尾跡寬度得齣血細胞濃度的大小。微量聚環氧乙烷(PEO)減阻劑的加入使粘彈性作用起主導作用,血細胞嚮壁麵髮生遷移,併且齣現複雜的分層分佈。研究結果有望為微通道中非牛頓流體等複雜流體各組分的分離和操控提供新的思路。
구유원주진렬적미통도가이용법림효응산생적무세포혈장층(미적)래방대혈액등복잡류체적류동행위,종이경호지조공류체혹간편지예측류체적특성。이혈액작위전형적복잡류체,계통고찰료정태화동태혈세포농도여감조제등인소대원주진렬미통도중미적관도화혈세포분포적영향규률。혈액양품류경원주진렬후산생미적관도수착혈세포농도적증대이감소심지소실。재고찰적1.7%-70%혈세포농도범위내,가근거량자적정량관계유미적관도득출혈세포농도적대소。미량취배양을완(PEO)감조제적가입사점탄성작용기주도작용,혈세포향벽면발생천이,병차출현복잡적분층분포。연구결과유망위미통도중비우돈류체등복잡류체각조분적분리화조공제공신적사로。
The flowing behaviors of the complex fluids such as blood sample may be amplified through cell-free plasma layer (i.e. the wake) induced by F?hr?us-Lindqvist effect in the microchannels with pillar array, which may better manipulate the fluids and easily predict the fluid property. Taking the diluted blood as an example, the effects of factors such as static and dynamic cell concentration as well as the addition of drag reducer on the wake width and the distribution of blood cells in the mi?crochannels are systematically investigated in the study. The wake width of blood sample generated along the pillar array de?creases and even disappears with the increasing cell concentration. In the investigated cell concentration range of 1.7%-70%, the cell concentration value can be determined by the wake width according to their quantitative relationship. Compared with the dominant lift force in the blood sample without polyethylene oxide (PEO), the viscoelastic effect becomes dominant in that with trace PEO. The blood cells migrate to channel walls and the complex layered distribution manifests. The results will pro?vide the new ideas for component separation and manipulation of complex fluids such as non-Newtonian fluid in the microchan?nels.