中南大学学报(英文版)
中南大學學報(英文版)
중남대학학보(영문판)
JOURNAL OF CENTRAL SOUTH UNIVERSITY OF TECHNOLOGY(ENGLISH EDITION)
2015年
7期
2620-2628
,共9页
褚菲%马小平%王福利%贾润达
褚菲%馬小平%王福利%賈潤達
저비%마소평%왕복리%가윤체
Mamdani-type fuzzy system%robust system%subtractive clustering algorithm%outlier%partial robust M-regression
A novel approach for constructing robust Mamdani fuzzy system was proposed, which consisted of an efficiency robust estimator (partial robust M-regression, PRM) in the parameter learning phase of the initial fuzzy system, and an improved subtractive clustering algorithm in the fuzzy-rule-selecting phase. The weights obtained in PRM, which gives protection against noise and outliers, were incorporated into the potential measure of the subtractive cluster algorithm to enhance the robustness of the fuzzy rule cluster process, and a compact Mamdani-type fuzzy system was established after the parameters in the consequent parts of rules were re-estimated by partial least squares (PLS). The main characteristics of the new approach were its simplicity and ability to construct fuzzy system fast and robustly. Simulation and experiment results show that the proposed approach can achieve satisfactory results in various kinds of data domains with noise and outliers. Compared with D-SVD and ARRBFN, the proposed approach yields much fewer rules and less RMSE values.