新型炭材料
新型炭材料
신형탄재료
NEW CARBON MATERIALS
2015年
3期
269-274
,共6页
苯酚%活性炭%微纤包覆活性炭复合材料%吸附动力学%结构化固定床
苯酚%活性炭%微纖包覆活性炭複閤材料%吸附動力學%結構化固定床
분분%활성탄%미섬포복활성탄복합재료%흡부동역학%결구화고정상
Phenol%Activated carbon%Microfibrous composites%Adsorption dynamics%Structured fixed bed
以不锈钢微纤、粉状活性炭和粘合剂为原料,采用湿法造纸和烧结工艺制备出纸状微纤包覆活性炭复合材料;在固定床进出口端分别装填颗粒活性炭(13 cm)和微纤包覆活性炭复合材料(2 cm)形成结构化固定床,测定苯酚在颗粒活性炭固定床和结构化固定床上的吸附透过曲线;考察不同实验条件下苯酚在结构化固定床上的吸附动力学,并采用Yoon模型和无效层厚度理论进行理论分析。结果表明,相对于颗粒活性炭固定床,苯酚在结构化固定床上的吸附透过曲线斜率明显增加,苯酚在结构化固定床上的吸附透过曲线斜率随着进口初始浓度的提高或流体流量的增大而增大;根据无效层厚度理论和Yoon模型分别分析计算,苯酚在结构化固定床上的无效层厚度相对于颗粒活性炭固定床的减少了14%,Yoon模型中的吸附速率常数k值明显增加。因此,采用基于微纤包覆活性炭复合材料的结构化固定床,可以强化床层上的吸附传质过程,并提高吸附床层利用率。
以不鏽鋼微纖、粉狀活性炭和粘閤劑為原料,採用濕法造紙和燒結工藝製備齣紙狀微纖包覆活性炭複閤材料;在固定床進齣口耑分彆裝填顆粒活性炭(13 cm)和微纖包覆活性炭複閤材料(2 cm)形成結構化固定床,測定苯酚在顆粒活性炭固定床和結構化固定床上的吸附透過麯線;攷察不同實驗條件下苯酚在結構化固定床上的吸附動力學,併採用Yoon模型和無效層厚度理論進行理論分析。結果錶明,相對于顆粒活性炭固定床,苯酚在結構化固定床上的吸附透過麯線斜率明顯增加,苯酚在結構化固定床上的吸附透過麯線斜率隨著進口初始濃度的提高或流體流量的增大而增大;根據無效層厚度理論和Yoon模型分彆分析計算,苯酚在結構化固定床上的無效層厚度相對于顆粒活性炭固定床的減少瞭14%,Yoon模型中的吸附速率常數k值明顯增加。因此,採用基于微纖包覆活性炭複閤材料的結構化固定床,可以彊化床層上的吸附傳質過程,併提高吸附床層利用率。
이불수강미섬、분상활성탄화점합제위원료,채용습법조지화소결공예제비출지상미섬포복활성탄복합재료;재고정상진출구단분별장전과립활성탄(13 cm)화미섬포복활성탄복합재료(2 cm)형성결구화고정상,측정분분재과립활성탄고정상화결구화고정상상적흡부투과곡선;고찰불동실험조건하분분재결구화고정상상적흡부동역학,병채용Yoon모형화무효층후도이론진행이론분석。결과표명,상대우과립활성탄고정상,분분재결구화고정상상적흡부투과곡선사솔명현증가,분분재결구화고정상상적흡부투과곡선사솔수착진구초시농도적제고혹류체류량적증대이증대;근거무효층후도이론화Yoon모형분별분석계산,분분재결구화고정상상적무효층후도상대우과립활성탄고정상적감소료14%,Yoon모형중적흡부속솔상수k치명현증가。인차,채용기우미섬포복활성탄복합재료적결구화고정상,가이강화상층상적흡부전질과정,병제고흡부상층이용솔。
Stainless steel fiber-reinforced activated carbon paper was prepared by a wet papermaking method, followed by a high temperature treatment, using stainless steel fibers as the reinforcement and coniferous wood pulp cellulose as the binder. A fixed bed for phenol adsorption was made by first packing granular activated carbon to a depth of 13 cm followed by 2 cm of the as-made pa-per near the outlet. The adsorption dynamics of phenol in the bed were investigated under different experimental conditions. Results show that the breakthrough curve of phenol in the bed is steeper than that in a bed packed only with activated carbon with the same bed height. The breakthrough time of phenol in the bed decreases and the breakthrough curves become sharper with increasing flow rate and inlet concentration. The length of the unused bed decreases by 14% compared with the bed packed with activated carbon on-ly, indicating that mass transfer in the bed and its utilization ratio are improved by the paper packing.