模式识别与人工智能
模式識彆與人工智能
모식식별여인공지능
Moshi Shibie yu Rengong Zhineng
2015年
6期
521-527
,共7页
粒子群优化算法( PSO)%队伍演化算法( TeamEA)%并行优化%动态控制
粒子群優化算法( PSO)%隊伍縯化算法( TeamEA)%併行優化%動態控製
입자군우화산법( PSO)%대오연화산법( TeamEA)%병행우화%동태공제
Particle Swarm Optimization ( PSO)%Team Evolutionary Algorithm ( TeamEA)%Parallel Optimization%Dynamic Control
粒子群优化算法( PSO)由于其原理简单、较易实现等特点,得到广泛研究和应用。为加快优化速度,提高收敛精度,文中提出基于PSO的队伍演化算法。该算法将优化过程分为两个阶段:第一阶段为保持多样性,把队员分成若干个初级队伍并行优化,形成高级队伍;后一阶段为提高收敛速度,仅优化高级队伍。在整个优化过程中,根据评估队员所取得的成绩,动态控制队员的调整步长和最大调整空间,同时产生教练组,为队员的进步方向提供指导。通过高维多峰测试函数进行测试对比,验证文中算法的优越性和有效性。
粒子群優化算法( PSO)由于其原理簡單、較易實現等特點,得到廣汎研究和應用。為加快優化速度,提高收斂精度,文中提齣基于PSO的隊伍縯化算法。該算法將優化過程分為兩箇階段:第一階段為保持多樣性,把隊員分成若榦箇初級隊伍併行優化,形成高級隊伍;後一階段為提高收斂速度,僅優化高級隊伍。在整箇優化過程中,根據評估隊員所取得的成績,動態控製隊員的調整步長和最大調整空間,同時產生教練組,為隊員的進步方嚮提供指導。通過高維多峰測試函數進行測試對比,驗證文中算法的優越性和有效性。
입자군우화산법( PSO)유우기원리간단、교역실현등특점,득도엄범연구화응용。위가쾌우화속도,제고수렴정도,문중제출기우PSO적대오연화산법。해산법장우화과정분위량개계단:제일계단위보지다양성,파대원분성약간개초급대오병행우화,형성고급대오;후일계단위제고수렴속도,부우화고급대오。재정개우화과정중,근거평고대원소취득적성적,동태공제대원적조정보장화최대조정공간,동시산생교련조,위대원적진보방향제공지도。통과고유다봉측시함수진행측시대비,험증문중산법적우월성화유효성。
Particle swarm optimization ( PSO) is widely studied and applied due to its simple principle and easy implementation. Aiming at improving the convergence speed and the search precision, an algorithm based on PSO, team evolutionary algorithm ( TeamEA) , is presented. The optimization process of this algorithm is divided into two stages. At the first stage, to keep the diversity the players are divided into junior teams to optimize and the senior team is formed. At the second stage, to improve the convergence speed, only the senior team is optimized. In the process of the whole optimization, by evaluating the achievements of the players, the adjustment of step-length and the maximum space are controlled, and the coaching staff is formed to guide the progress direction of the players. Results on high-dimensional multimodal test functions validate the superiority and effectiveness of the proposed algorithm.