化工学报
化工學報
화공학보
JOURNAL OF CHEMICAL INDUSY AND ENGINEERING (CHINA)
2015年
8期
2824-2830
,共7页
潘云翔%孙正庆%段明宇%刘昌俊
潘雲翔%孫正慶%段明宇%劉昌俊
반운상%손정경%단명우%류창준
纳米材料%肽%生物膜%冷等离子体%自组装
納米材料%肽%生物膜%冷等離子體%自組裝
납미재료%태%생물막%랭등리자체%자조장
nanomaterial%peptide%biofilm%cold plasma%self-assembly
生物材料在污水处理、气体检测、储能、光催化等领域展现出良好的应用前景。但传统生物材料制备方法复杂,且使用高毒性有机溶剂。实现简单、绿色的生物材料制备是目前亟需解决的问题。室温下冷等离子体诱导生物分子自组装制备生物材料,不需有机溶剂,不需高温焙烧、H2还原、化学还原和光致还原,实现了生物材料制备过程的简单化、绿色化。通过冷等离子体诱导生物分子自组装已制备出厚度为(1.03±0.14)nm 的生物膜以及含有尺寸小于10 nm、分散性极好的金属纳米颗粒的金属/生物复合材料。但相关研究刚起步,许多科学问题仍然未知,特别是冷等离子体诱导生物分子自组装机理需进一步研究。这些科学问题一旦得到完美诠释,必定会实现生物材料的可控、宏量制备。
生物材料在汙水處理、氣體檢測、儲能、光催化等領域展現齣良好的應用前景。但傳統生物材料製備方法複雜,且使用高毒性有機溶劑。實現簡單、綠色的生物材料製備是目前亟需解決的問題。室溫下冷等離子體誘導生物分子自組裝製備生物材料,不需有機溶劑,不需高溫焙燒、H2還原、化學還原和光緻還原,實現瞭生物材料製備過程的簡單化、綠色化。通過冷等離子體誘導生物分子自組裝已製備齣厚度為(1.03±0.14)nm 的生物膜以及含有呎吋小于10 nm、分散性極好的金屬納米顆粒的金屬/生物複閤材料。但相關研究剛起步,許多科學問題仍然未知,特彆是冷等離子體誘導生物分子自組裝機理需進一步研究。這些科學問題一旦得到完美詮釋,必定會實現生物材料的可控、宏量製備。
생물재료재오수처리、기체검측、저능、광최화등영역전현출량호적응용전경。단전통생물재료제비방법복잡,차사용고독성유궤용제。실현간단、록색적생물재료제비시목전극수해결적문제。실온하랭등리자체유도생물분자자조장제비생물재료,불수유궤용제,불수고온배소、H2환원、화학환원화광치환원,실현료생물재료제비과정적간단화、록색화。통과랭등리자체유도생물분자자조장이제비출후도위(1.03±0.14)nm 적생물막이급함유척촌소우10 nm、분산성겁호적금속납미과립적금속/생물복합재료。단상관연구강기보,허다과학문제잉연미지,특별시랭등리자체유도생물분자자조장궤리수진일보연구。저사과학문제일단득도완미전석,필정회실현생물재료적가공、굉량제비。
The biomaterials are promising for water treatment, gas sensor, energy storage and photocatalysis. However, the traditional preparation processes of the biomaterials are complex, and require toxic organic reagents. Simple and green preparation methods for biomaterials are highly desired. The cold plasma-induced self-assembly of biomolecules at room temperature is simple and green, as it does not use organic reagent, and does not require calcinations, H2 reduction, chemical reduction and photoinduced reduction. By using the plasma-induced self-assembly, biofilm with a height of(1.03±0.14)nm and metal/biomaterial composites with highly dispersed metal nanoparticles (< 10 nm) have been successfully fabricated. However, many fundamental issues about the cold plasma-induced self-assembly, especially its mechanism, are still unsolved. A deep understanding on these problems will allow for controllable and massive syntheses of biomaterials.