计算机工程与设计
計算機工程與設計
계산궤공정여설계
COMPUTER ENGINEERING AND DESIGN
2015年
7期
1794-1799
,共6页
侯荣涛%路郁%王琴%周彬
侯榮濤%路鬱%王琴%週彬
후영도%로욱%왕금%주빈
K-M eans%密度%预分类%层次树%精细簇
K-M eans%密度%預分類%層次樹%精細簇
K-M eans%밀도%예분류%층차수%정세족
K-Means%density%pre-classification%CHT%refined cluster
为解决K‐M eans算法对初始聚类中心的敏感性,提出基于精细簇的K‐M eans稳定算法。采用基于密度算法的预分类技术来获得高密度的核心类,确定能够代表数据集结构的类层次树;根据类层次树中具有较高代表性的子类中心进行K‐M eans聚类,获得精细簇;按照层次树中的类归属合并精细簇,获得精确稳定的聚类效果。实验结果表明,该方法能够克服K‐M eans由于随机初始质心造成的结果不稳定性,一定程度上提高了聚类效果。
為解決K‐M eans算法對初始聚類中心的敏感性,提齣基于精細簇的K‐M eans穩定算法。採用基于密度算法的預分類技術來穫得高密度的覈心類,確定能夠代錶數據集結構的類層次樹;根據類層次樹中具有較高代錶性的子類中心進行K‐M eans聚類,穫得精細簇;按照層次樹中的類歸屬閤併精細簇,穫得精確穩定的聚類效果。實驗結果錶明,該方法能夠剋服K‐M eans由于隨機初始質心造成的結果不穩定性,一定程度上提高瞭聚類效果。
위해결K‐M eans산법대초시취류중심적민감성,제출기우정세족적K‐M eans은정산법。채용기우밀도산법적예분류기술래획득고밀도적핵심류,학정능구대표수거집결구적류층차수;근거류층차수중구유교고대표성적자류중심진행K‐M eans취류,획득정세족;안조층차수중적류귀속합병정세족,획득정학은정적취류효과。실험결과표명,해방법능구극복K‐M eans유우수궤초시질심조성적결과불은정성,일정정도상제고료취류효과。
To decrease the sensitivity of initial centroids of K‐Means ,a stable method based on refined cluster was proposed .The density based algorithm was used for pre‐classification to get CHT (cluster‐hierarchy‐tree) that contained the cluster structure of data set .The sub‐clusters with high density in CHT were chosen as initial parameters of K‐Means .According to the relationship in CHT ,the small classes produced by K‐Means were merged and the clustering result was gained .The experimental results show the stability and better clustering performance of the proposed method .