山东大学学报(理学版)
山東大學學報(理學版)
산동대학학보(이학판)
JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE)
2015年
8期
72-77
,共6页
?-Laplacian%周期边值问题%紧集连通理论%Leray-Schauder 度
?-Laplacian%週期邊值問題%緊集連通理論%Leray-Schauder 度
?-Laplacian%주기변치문제%긴집련통이론%Leray-Schauder 도
?-Laplacian%periodic boundary value problems%continuation theorem%Leray-Schauder degree
考虑了奇异-Laplacian 周期边值问题{((u′))′+g(u)=s +e(t),t∈[0,T], u(0)-u(T)=0=u′(0)-u′(T )解的存在性,其中:(-a,a)→R 是单调递增的同胚且?(0)=0,0<a <+∞,g∈C(R,R),e∈C[0,T],s 是一个参数。主要结果的证明基于紧集连通理论及 Leray-Schauder 度理论。
攷慮瞭奇異-Laplacian 週期邊值問題{((u′))′+g(u)=s +e(t),t∈[0,T], u(0)-u(T)=0=u′(0)-u′(T )解的存在性,其中:(-a,a)→R 是單調遞增的同胚且?(0)=0,0<a <+∞,g∈C(R,R),e∈C[0,T],s 是一箇參數。主要結果的證明基于緊集連通理論及 Leray-Schauder 度理論。
고필료기이-Laplacian 주기변치문제{((u′))′+g(u)=s +e(t),t∈[0,T], u(0)-u(T)=0=u′(0)-u′(T )해적존재성,기중:(-a,a)→R 시단조체증적동배차?(0)=0,0<a <+∞,g∈C(R,R),e∈C[0,T],s 시일개삼수。주요결과적증명기우긴집련통이론급 Leray-Schauder 도이론。
We consider the existence of solutions for singular ?-Laplacian of periodic boundary value problems{((u′))′+g(u)=s +e(t),t∈[0,T], u(0)-u(T)=0 =u′(0)-u′(T ), where :(-a,a)→R(0 <a <+∞)is an increasing homeomorphism such that (0)=0,g∈C(R,R),e∈C[0, T],and s is a parameter.The proof of the main result is based on the continuation theorem and Leray-Schauder degree arguments.