光谱学与光谱分析
光譜學與光譜分析
광보학여광보분석
SPECTROSCOPY AND SPECTRAL ANALYSIS
2015年
8期
2180-2185
,共6页
翟晨%彭彦昆%李永玉%DHAKALSagar%徐田锋%郭浪花
翟晨%彭彥昆%李永玉%DHAKALSagar%徐田鋒%郭浪花
적신%팽언곤%리영옥%DHAKALSagar%서전봉%곽랑화
拉曼光谱%无损检测%苹果%溴氰菊酯%啶虫脒
拉曼光譜%無損檢測%蘋果%溴氰菊酯%啶蟲脒
랍만광보%무손검측%평과%추청국지%정충미
Raman spectroscopy%Nondestructive detection%Apple%Deltamethrin%Acetamiprid
应用拉曼光谱技术结合化学计量学方法能有效的实现果蔬中农药残留的定性定量分析。本研究借助实验室自主研发的拉曼光谱检测系统,对苹果中溴氰菊酯和啶虫脒的快速无损识别和检测进行了探索。定性分析时将拉曼峰574和843 cm -1分别作为识别溴氰菊酯和啶虫脒的拉曼指纹,当苹果中的溴氰菊酯和啶虫脒残留的含量分别为0.78和0.15 mg · kg -1时,两种农药的特征峰仍清晰可见。定量分析首先对光谱进行多种预处理(Savitzky‐Golay平滑、一阶导、二阶导、基线校准、标准正态变量变换),结合偏最小二乘法分别建立苹果中溴氰菊酯和啶虫脒含量的定量模型。结果表明,采用8次多项式拟合进行基线校准的预处理方法效果最好,对于溴氰菊酯,偏最小二乘模型预测值与气相色谱法测定值的相关系数和预测均方根误差分别为0.94和0.55 mg · kg -1,对于啶虫脒,其偏最小二乘模型的相关系数与预测均方根误差分别为0.85和0.12 mg · kg -1。本研究证实了利用拉曼技术对苹果农残进行无损检测的可行性,使用该方法进行检测时,在光谱测定前不需要进行前处理,光谱测定后样品无任何损伤,该技术实现了果蔬农残的现场检测,可在检测部门、果蔬加工企业、超市、市场等场所得到推广使用,为果蔬品质安全提供了一种无损、快速和环保的检测方法。
應用拉曼光譜技術結閤化學計量學方法能有效的實現果蔬中農藥殘留的定性定量分析。本研究藉助實驗室自主研髮的拉曼光譜檢測繫統,對蘋果中溴氰菊酯和啶蟲脒的快速無損識彆和檢測進行瞭探索。定性分析時將拉曼峰574和843 cm -1分彆作為識彆溴氰菊酯和啶蟲脒的拉曼指紋,噹蘋果中的溴氰菊酯和啶蟲脒殘留的含量分彆為0.78和0.15 mg · kg -1時,兩種農藥的特徵峰仍清晰可見。定量分析首先對光譜進行多種預處理(Savitzky‐Golay平滑、一階導、二階導、基線校準、標準正態變量變換),結閤偏最小二乘法分彆建立蘋果中溴氰菊酯和啶蟲脒含量的定量模型。結果錶明,採用8次多項式擬閤進行基線校準的預處理方法效果最好,對于溴氰菊酯,偏最小二乘模型預測值與氣相色譜法測定值的相關繫數和預測均方根誤差分彆為0.94和0.55 mg · kg -1,對于啶蟲脒,其偏最小二乘模型的相關繫數與預測均方根誤差分彆為0.85和0.12 mg · kg -1。本研究證實瞭利用拉曼技術對蘋果農殘進行無損檢測的可行性,使用該方法進行檢測時,在光譜測定前不需要進行前處理,光譜測定後樣品無任何損傷,該技術實現瞭果蔬農殘的現場檢測,可在檢測部門、果蔬加工企業、超市、市場等場所得到推廣使用,為果蔬品質安全提供瞭一種無損、快速和環保的檢測方法。
응용랍만광보기술결합화학계량학방법능유효적실현과소중농약잔류적정성정량분석。본연구차조실험실자주연발적랍만광보검측계통,대평과중추청국지화정충미적쾌속무손식별화검측진행료탐색。정성분석시장랍만봉574화843 cm -1분별작위식별추청국지화정충미적랍만지문,당평과중적추청국지화정충미잔류적함량분별위0.78화0.15 mg · kg -1시,량충농약적특정봉잉청석가견。정량분석수선대광보진행다충예처리(Savitzky‐Golay평활、일계도、이계도、기선교준、표준정태변량변환),결합편최소이승법분별건립평과중추청국지화정충미함량적정량모형。결과표명,채용8차다항식의합진행기선교준적예처리방법효과최호,대우추청국지,편최소이승모형예측치여기상색보법측정치적상관계수화예측균방근오차분별위0.94화0.55 mg · kg -1,대우정충미,기편최소이승모형적상관계수여예측균방근오차분별위0.85화0.12 mg · kg -1。본연구증실료이용랍만기술대평과농잔진행무손검측적가행성,사용해방법진행검측시,재광보측정전불수요진행전처리,광보측정후양품무임하손상,해기술실현료과소농잔적현장검측,가재검측부문、과소가공기업、초시、시장등장소득도추엄사용,위과소품질안전제공료일충무손、쾌속화배보적검측방법。
Raman spectroscopy combined with chemometric methods has been thought to an efficient method for identification and determination of pesticide residues in fruits and vegetables .In the present research ,a rapid and nondestructive method was proposed and testified based on self‐developed Raman system for the identification and determination of deltamethrin and acet‐amiprid remaining in apple .The peaks of Raman spectra at 574 and 843 cm -1 can be used to identify deltamethrin and acet‐amiprid ,respectively ,the characteristic peaks of deltamethrin and acetamiprid were still visible when the concentrations of the two pesticides were 0.78 and 0.15 mg · kg -1 in apples samples ,respectively .Calibration models of pesticide content were devel‐oped by partial least square (PLS) algorithm with different spectra pretreatment methods (Savitzky‐Golay smoothing ,first de‐rivative transformation ,second derivative transformation ,baseline calibration ,standard normal variable transformation ) .The baseline calibration methods by 8th order polynomial fitting gave the best results .For deltamethrin ,the obtained prediction coef‐ficient (Rp ) value from PLS model for the results of prediction and gas chromatography measurement was 0.94;and the root mean square error of prediction (RMSEP) was 0.55 mg · kg -1 .The values of Rp and RMSEP were respective 0.85 and 0.12 mg · kg -1 for acetamiprid .According to the detect performance ,applying Raman technology in the nondestructive determination of pesticide residuals in apples is feasible .In consideration of that it needs no pretreatment before spectra collection and causes no damage to sample ,this technology can be used in detection department ,fruit and vegetable processing enterprises ,supermarket , and vegetable market .The result of this research is promising for development of industrially feasible technology for rapid ,non‐destructive and real time detection of different types of pesticide with its concentration in apples .This supplies a rapid nonde‐structive and environmentally friendly way for the determination of fruit and vegetable quality and safety .